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Trang Andrea Vu 
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2016-2020 

Jiwook Shim, Ph.D. 
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Currently, when patients are diagnosed with cancer, they often receive a treatment 

based on the type and stage of the tumor. However, different patients may respond to the 

same treatment differently, due to the variation in their genomic alteration profile. Thus, it 

is essential to understand the effect of genomic alterations on cancer drug efficiency and 

engineer devices to monitor these changes for therapeutic response prediction. Nanopore-

based detection technology features devices containing a nanometer-scale pore embedded 

in a thin membrane that can be utilized for DNA sequencing, biosensing, and detection of 

biological or chemical modifications on single molecules. Overall, this project aims to 

evaluate the capability of the biological nanopore, α-hemolysin, as a biosensor for genetic 

and epigenetic biomarkers of cancer. Specifically, we utilized the nanopore to (1) study the 

effect of point mutations on C-kit1 G-quadruplex formation and its response to CX-5461 

cancer drug; (2) evaluate the nanopore’s ability to detect cytosine methylation in label-

dependent and label-independent manners; and (3) detect circulating-tumor DNA collected 

from lung cancer patients’ plasma for disease detection and treatment response monitoring. 

Compared to conventional techniques, nanopore assays offer increased flexibility and 

much shorter processing time.  
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Chapter 1 

 

Introduction 

 

1.1 Cancer and Precision Medicine 

Cancer is a group of diseases where abnormal cell growth can potentially spread to 

the surrounding tissues. It arises from the accumulation of score alterations affecting the 

structure and function of the genome. Most cancers belong to one of three groups— 

carcinomas, sarcomas, and leukemias or lymphomas—with carcinomas being accountable 

for approximately 90% of all human cancers.1  

In the United States, there are over one million new cancer cases, and more than 

500,000 cancer deaths, each year. With only 5-10% of all cancer cases coming from 

inherited genetic defects, the majority of cancers are caused by environmental exposures 

and lifestyles, such as viral infection (15%), tobacco use (22%), poor diet (35%), radiation, 

stress, and environmental pollution.2  

 1.1.1 Molecular markers of cancer. The development of a malignant cancerous 

tumor frequently results from a multistep process, rather than just a single genetic change.3 

This multistep process originates from various genetic and epigenetic modifications, which 

exert their pathological effects by causing defects in genes in one of two ways: (1) an 

enhanced expression or activation of oncogenes (gain in function) and (2) repression or 

inactivation of tumor-suppressor genes (loss of function).4 Several methods have been used 

in research for detecting various cancer-causing factors and different techniques are applied 

depending on the particular type of cancer. 
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1.1.1.1 Genetic alterations. In cancer cells, somatic mutations occur and 

accumulate at a significantly higher rate than in normal cells. These mutations cover a wide 

range of structural alterations in the DNA. They consist of large chromosomal alterations 

that encompass millions of base-pairs (e.g. translocation, deletion, or amplification) as well 

as smaller changes in nucleotide sequences (e.g. point mutations). These different types of 

genetic alterations often co-exist within a single tumor.5 Together, they cause defects in 

DNA repair pathways, cell-cycle regulation, apoptosis, or create error-prone DNA 

polymerase.5  The ability to quickly accumulate mutations is critical for cancer cells’ rapid 

growth and development of resistance to cytotoxic cancer treatments.6   

1.1.1.2 Epigenetic alterations. In contrast to genetic alterations, “epigenetic 

alterations” refers to all heritable changes in gene expression and chromatin structure that 

are not encoded in the DNA sequence itself.5 Epigenetic inheritance, such as DNA 

methylation, histone modification and RNA-meditated silencing, are essential mechanisms 

that allow stable propagation of gene activities.7-8 Disruption of these mechanisms causes 

inappropriate gene expression (i.e. activation of oncogenes or inactivation of tumor-

suppressor genes) that can lead to cancer development.9   

A main distinguishing feature of epigenetic alterations compared to genetic changes 

is that they are reversible, and thus, present an exciting opportunity for the development of 

novel strategies for cancer prevention.5 Overall, both genetic and epigenetic alterations are 

involved in the formation of a field for cancerization (i.e. cancers develop at multiple foci 

in a tissue). However, their exact contribution is dependent on the major carcinogens 

involved and their carcinogenic mechanisms.10   
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1.1.2. Toward precision medicine for cancer treatment. Nowadays, when a 

patient is diagnosed with cancer, they often receive a combination of different treatment 

approaches to combat the disease, including surgery, chemotherapy, radiation therapy, 

immunotherapy, or any combination of the foregoing. The type of treatment and dosage 

are often similar between patients with the same type and stage of cancer. Even so, different 

people may respond differently. This is because a tumor’s genetic changes, which cause 

cancer to grow and spread, can differ significantly among patients with the same cancer. 

On the other hand, different types of cancers can also share the same cancer-causing 

changes.   

Precision medicine is an approach that matches patients to therapies depending on 

their own genomic information, to maximize a patient’s response to treatment.11  Using the 

concept of massively parallel sequencing, the development of high-throughput Next-

generation sequencing (NGS) devices (e.g. Illumina, Complete Genomics, and Roche 

Applied Science 454) have revolutionized personalized genomic medicines. In fact, for the 

first time, several clinical samples of patients were obtained and analyzed with NGS, 

providing an insight into the high complexity of diseases such as cancer.11-19 However, up-

to-date, clinical trials demonstrate that the level of patient benefit from precision medicine 

in cancer treatment is still low.11, 20-23    

A possible explanation for this unexpected result is that most current efforts are 

based on the idea that cancers are just like other rare genetic disorders. Specifically, the 

presence of epigenetic changes, lineage-specific drivers and non-oncogene-driven 

vulnerabilities are often ignored.11 Over 90% of cancer death are caused by metastatic 

spread of cancer to distant sites.24-26 During tumor manifestation and progression, treatment 
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decisions are generally based on results of primary tumor specimens from diagnostic 

testing. However, this method neglects a tumor’s genetic and epigenetic evolutionary 

changes, which are shown to present a major challenge for treatment selection.27-30 Thus, 

longitudinal monitoring of a tumor’s genetic and epigenetic variability are essential for 

correct treatment selection and cancer eradication.31 

While it is impractical for patients to undergo serial surgical biopsy along tumor 

progression, liquid biopsy provides a minimally invasive and more sustainable alternative 

to interrogate cancer cells longitudinally. Liquid biopsy is the sampling of non-solid 

biological tissue, to extract tumor-derived materials (e.g. circulating tumor cells, 

circulating tumor DNAs, and exosomes).31 Up-to-date, plasma-derived circulating tumor 

DNA (ctDNAs) are the most commonly used blood-based biomarker in clinical practice, 

and are utilized most frequently to (1) monitor a patient’s response to therapy, (2) detect 

minimal residual disease along treatment, and (3) assess therapy resistance development. 

Currently, the majority of liquid biopsy samples are analyzed with NGS, which can 

be costly and require extensive processing times of up to several weeks, or digital PCR that 

are restricted to a single locus (a fixed position on a chromosome). Furthermore, NGS 

technologies employ several enrichment, amplification, and labeling steps, such as 

polymerase chain reaction (PCR) and bisulfite conversions, which can cause the 

performance to be time and cost intensive, and can also increase the possibility of false 

positive results.32 Due to the need for a label-free, high throughput system, there has been 

a growing interest toward using third- and fourth-generation sequencing, specifically 

nanopore technologies, in cancer prevention and detection in the past decades. 



www.manaraa.com

 

5 

 

1.2 Nanopore Technology 

Since its development and publication in 1996, the nanopore has become an 

emergent and powerful technology for a direct and inexpensive method for DNA 

sequencing, biosensing, and detecting biological or chemical modifications on single 

molecules, as well as the kinetics of DNA and protein folding.33-37 

1.2.1 Definition of nanopore technology. Formal definitions of nanopore 

technology typically feature devices that contain a nanometer-scale pore embedded in a 

thin membrane. Originating from the Coulter counter and ion channels, nanopore-based 

devices can detect various charged biomolecules that are slightly smaller than the diameter 

of the pore. In the nanopore-based analysis, a biological or a solid-state membrane 

separates the experimental chamber into two compartments, referred to as the cis and trans 

sides, to which a cathode and anode are attached, respectively. Negatively charged 

biomolecules, such as DNA, are then introduced into the cis side of the chamber. Under 

the electrophoretic force exerted by the external current, the biomolecule transports 

through the nanopore to the trans chamber. As the molecule moves through the nanopore, 

it interrupts the current signal, causing ionic current blockages. Physical and chemical 

properties of the targeted molecule can be analyzed using the amplitude and duration of 

current blockages through the nanopore.38-39 

1.2.2 Types of nanopore. The two main types of nanopore—biological and solid-

state nanopores—can be obtained or fabricated in numerous ways40-45 and offer a wide 

range of biomolecule detection. Biological nanopores are secreted from different bacteria, 

of which the two most popular types come from α-hemolysin and MspA porin. These 

biological nanopores are then usually inserted into different biological substrates, such as  
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a phospholipid bilayer, liposomes, or polymer films. Biological membranes are structurally 

well-defined and easily reproducible. Biological nanopores are mostly used for the 

detection of single-stranded DNA (ssDNA), microRNA (miRNA), and disease 

diagnostics.39 Most solid-state nanopores are fabricated in membranes made of silicon 

oxide (SiO), silicon nitride (SiNx), hafnium oxide (HfO2), graphene, aluminum oxide 

(Al2O3) and hybrid materials.46-48 With controllable pore size and membrane thickness, 

solid-state nanopores have been beneficial for use in RNA sequencing, single-stranded and 

double-stranded DNA sequencing, DNA-protein complex detection, and other biomolecule 

detection.  

1.2.3 Experimental setup. Detailed reviews on the experimental setups and uses 

of the nanopore technology have been described in literature before.39-40, 47, 49-51 Figure 1A 

shows a schematic of the biological nanopore experiment setup. Briefly, a Teflon film 

divides the testing chamber into two separate compartments, named cis and trans 

chambers, to which negative and positive electrodes are attached, respectively (as 

described in 2.1 above). When 𝛼-HL protein is introduced to the cis chamber, it can insert 

a mushroom-shaped channel into lipid bilayer, connecting the cis and the trans sides 

(Figure 1B). α – hemolysin (𝛼-HL), a toxin released by the Staphylococcus aureus 

bacterium, is well known for its ability to form a protein channel with a well-defined 

structure as well as dimensions. Specifically, the 𝛼-HL α–hemolysin is a water-filled, 

mushroom-shaped channel consists of a cis-opening (2.6nm), a nano-constriction (1.4nm), 

and a trans opening (2.0nm).52  DNA or any other charged biomolecules are then injected 

to the cis chamber. Under an electrophoretic force, charged molecules (e.g. DNA) can 

translocate through the nanopore, resulting in a transient current blockage with 
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characteristic amplitude (%I/Io), dwell time (∆𝑡), and event signature. Depending on the 

specific sequence, ssDNA strands can adopt several common conformations, including 

hairpin, G-quadruplexes and i-motif (among many others).47, 53-55 These secondary 

structures, while different, can coexist at the same time in the solution, causing various 

types of current-blockages as shown in Figure 1C. Depending on the size, conformation, 

and kinetics of each biomolecule species, several types of current blockage can be 

observed. These current blockages are characterized by their specific amplitudes and dwell 

times, allowing different biomolecules to be distinguished.  

 

 

 

 
Figure 1. The experimental setup of α-hemolysin nanopore. The experimental setup of the 

𝒂-HL nanopore experiment. (A) The testing chamber contains two compartments, cis and 

trans, separated by a Teflon film. (B)  𝒂-HL, a mushroom shape nanopore which connects 

the cis and trans chambers. (C) When DNA molecules, or other charged biomolecules, are 

inserted into the cis chamber, the applied current forces the biomolecules through the 𝒂-

HL nanopore, causing a current-drop (termed a blockage). Current blockages are analyzed 

and characterized by their amplitudes and dwell times. Each blockage trace is unique to the 

biomolecule species passing through the channel, depending on the size, conformation and 

kinetics of the interaction between the biomolecule and the nanopore. 
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1.2.4 Nanopore technology for precision medicine. Nanopore technology offers 

many advantages that NGS devices are incapable of: for instance, the nanopore has 

demonstrated the ability to detect CpGs methylation  (one of the earliest epigenetic 

biomarkers in cancer hallmarks) without the need of PCR amplification and bisulfite 

conversion.56-57 Thus, nanopore technology strives to be a potential genomic tool that is 

label-free, has a high throughput, a small sample volume requirement, flexible runtime, 

and minimal footprint.39 However, despite the past twenty years of significant progress in 

single molecular sequencing and analysis, nanopore technologies have not yet been 

translated into even distantly comparable advances in clinical settings. The aim of this 

thesis is to explore the ability of α-hemolysin nanopore to detect genetic and epigenetic 

changes on DNA, specifically ctDNAs. Through studying physical and electrical behavior 

of short DNA fragments, we can enhance the nanopore readout resolution, allowing the 

detection of DNA modifications. We believe that 𝛼-hemolysin nanopore is a good 

candidate, as the pore size stays consistent, yielding replicable results. 

1.3 Thesis Outline 

As described above, despite its significant potential and technological 

advancements in the past decades, applications of nanopore technology in clinical settings 

still come up short. The objective of this research is to explore and enhance the ability of 

α-hemolysin nanopore to study DNA fragments for cancer detection and precision 

medicine. To establish this purpose, we developed protocols to optimize the ability of both 

lab-based and commercially available nanopore assays in detecting DNA genetic and 

epigenetic alterations. A more detailed description of the studies performed in this thesis 

is listed below.  
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In Chapter 2 we provide an overview of the recent developments and applications 

of nanopore technology in studying cancer biomarkers. The development and progression 

of cancer are influenced by numerous genetic and epigenetic factors (e.g. structural 

variants, transcription factors, G-quadruplexes, methylations, histone modifications and 

expression of microRNAs). While nanopore technology has grown rapidly as a versatile 

DNA sequencer,39-40, 49, 58-61 its potential as a biosensor for cancer markers is still 

significantly underdeveloped.  

DNA is a flexible polymer that can adopt various structures depending on the 

sequence and surrounding environment. It is essential to evaluate the ability of α-hemolysin 

nanopore as a biosensor to detect and distinguish these structural changes. Therefore, in 

Chapter 3, we set out a study of the structural changes of an i-motif sequence with the 

surrounding environment’s pH level. Our results demonstrated that at high ionic 

concentration, C-rich DNA can dynamically fold into an i-motif or compacted structure 

according to the solution pH. These secondary structures, whose sizes were different, 

generated distinct electrical signal events  when captured by the nanopore.  

The most appealing strength of biological nanopores, such as the α-hemolysin, is 

their consistent dimensions and size selectivity. As the α-hemolysin nanopore only allows 

single-stranded DNA to translocate, all secondary structure must first dissociate into a 

linear strand at different rates, depending on its specific structural stability. In Chapter 4, 

we performed a comparative study on the formability and stability of Ckit1 G-quadruplex 

in K+ and Na+ environments. We further evaluated the effect of CX-5461 (a potential 

cancer drug) on stabilizing Ckit1 G-quadruplex structure. Using the event translocation 

time obtained from nanopore study coupled with K-nearest neighbor clustering analysis, 
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we found that cations have a significant impact on the G-quadruplex structural stability and 

volume. Our results demonstrate that combining machine learning classification with 

nanopore results would allow different G-quadruplexes to be distinguished with over 80% 

accuracy and sensitivity.  

While CX-5461 has an amplified effect on unmodified C-kit1 DNA sequence to 

halt cancer cell growth, activating mutations on C-kit1 have been observed in several types 

of malignancy, notably leukemia, melanoma, and gastrointestinal tumors.62-64 Thus, in 

Chapter 5, we set out to evaluate the stability of G-quadruplex structure formed by 

mutated C-kit1 DNA sequences and the altered efficacy of CX-5461 on these structures. 

We designed the sequences containing between zero and six mutated guanines, to partially 

or completely disrupt the G-quadruplex. In this study, we found that while G-quadruplex 

stability depends strongly on the number of mutations present, the position of mutated 

guanine was the main deciding factor for CX-5461 efficacy.   

Another type of epigenetic marker we focused on in this thesis is methylated 

cytosine, which is among the most studied epigenetic markers for cancer diagnosis, 

therapeutics, and prognosis.65-69 Despite the enormous number of studies and papers 

published on promoter methylation as potential cancer biomarkers, currently, there are only 

two FDA-approved, DNA methylation-based biomarker assays available on the market. A 

major challenge in the study of epigenetics is that most commonly used techniques, 

including bisulfite sequencing, cannot directly identify 5-methylated cytosine (5-mC) from 

native DNA. In Chapter 6, our study evaluates the feasibility of label-free detection of 

methylated cytosine using the nanopore. Through employing a salt concentration gradient 

between the two experimental chambers, we were able to decrease the DNA mobility and 
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velocity through the pore; thus, increasing the detection resolution. This method allowed 

us to distinguish methylated from unmethylated cytosine in mixtures with different 

composition.  

In Chapter 7, we employed methyl-binding protein (MBD2) as a specific tag, as a 

method to enhance methylation detection with nanopore technology. Label-free detection, 

while attractive for its simplicity, can be affected greatly by the local context of the DNA 

sequence. Conjugation of MBD2 to methylated DNA resulted in a significant increase in 

both event translocation time and current blockage amplitude. Coupling nanopore data 

output with commonly employed machine learning algorithms, we were able to distinguish 

methylated DNA from unmethylated DNA with optimal sensitivity and specificity of 88% 

and 86%, respectively. 

Having determined the sensitivity of nanopore technology, we evaluated the 

feasibility of applying nanopore technology in a clinical setting. Recent studies found that 

circulating-tumor DNA in the bloodstream exhibits the same genetic and epigenetic 

alterations as the solid tumor they originated from,70 and thus ctDNA can reflect such tumor 

type and stage. However, as circulating-tumor DNA are highly fragmented and present in 

low concentrations in blood circulation, it is still challenging for nanopore assay to 

effectively capture them.  In Chapter 8, we developed and evaluated two novel protocols 

that could be integrated: commercially available nanopore assay for sequencing and 

analyzing circulating-tumor DNAs. We employed rolling-circle amplification and blunt-

end ligation methods to create long DNA fragments that could be captured by the nanopore.  

Finally, in Chapter 9 we present a summary of our findings and discuss the 

potential directions and future applications. 
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Chapter 2 

 

Piecing Together the Puzzle: Nanopore Technology in Detection and Quantification 

of Cancer Biomarkers 

 

2.1 Abstract 

  Nanopore-based technology has grown rapidly in recent years, which have seen 

the wide application of biosensing research to a number of life sciences. In this chapter, we 

present a comprehensive outline of various genetic and epigenetic causal factors of cancer 

at the molecular level, as well as the use of nanopore technology in the detection and study 

of those specific factors. With the ability to detect both genetic and epigenetic alterations, 

nanopore technology would offer a cost-efficient, labor-free, and highly practical approach 

to diagnosing pre-cancerous stage and early-staged tumors in both clinical and laboratory 

settings. This chapter was adapted from our previously published paper (Vu, Trang, et al. 

“Piecing together the puzzle: nanopore technology in detection and quantification of cancer 

biomarkers.” RSC advances 7.68 (2017): 42653-42666.)2.2 Detection of Cancer 

Biomarkers 

2.2 Current State of the Art 

2.2.1 Structural variants. Structural variants (SVs) are one of the first recognized 

causal factors of cancer. A structural variant is a form of somatic DNA mutation, whereby 

the SV promotes the development and progression of cancer while contributing to all the 

important hallmarks of the instability in cancer genomes.71 The four main types of SVs are 

large deletions, amplifications, inversions and translocations of nucleotides within a DNA 

sequence. They are often responsible for the creation of fusion genes, copy number, and 

other regulatory changes that lead to activation or overexpression of oncogenes, as well as 

inactivation of tumor suppressor genes.72-76 In many cases, different SVs occur 
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simultaneously in a specific pathway that amplifies their genetic effects on cell instability. 

For example, with head and neck cancers, it was found that when the deletion of CDKN2A 

and amplification of CCND1 happen together, there is a higher risk of recurrence, 

metastasis, and death rather than when either genetic alteration occurs alone. 62-63 

SVs are important indicators of human cancers.64-67 Complex SVs have been found 

to cause approximately half of nucleotide deletions in pancreatic ductal adenocarcinoma 

(PDAC).68-70 Furthermore, CDKN2A/p16 and SMAD4/DPaazC4 have been identified as 

two of the most common deleted tumor suppressor genes. The ability to detect these 

mutations is critically important to the healthcare industry, allowing the monitoring of 

cancer patients for early detection of possible relapse.67-71 In mammalian cells with highly 

repetitive genomes, studies of SVs frequently use a resequencing approach, in which the 

read from the target genome is independently aligned from the reference genome to search 

for SVs.72 In general, besides specificity and sensitivity, when detecting SVs, a method’s 

quality is further judged by its ability to accurately predict breakpoint locations, the size of 

variants, and changes in copy count.67, 73 

As shown in Figure 2, Norris et al. demonstrated the value of detecting long SVs 

using Oxford MinIONTM, to detect a series of well-characterized SVs, including large 

deletions, inversions, and translocations that inactivate the CDKN2A/p16 and 

SMAD4/DPC4 tumor suppressor genes in pancreatic cancer.67 Using Oxford Nanopore 

barcodes, the Norris et al. produced libraries for all 12 PCR amplicons in one run, yielding 

reads with PHRED scores of 10.9-11.50. PHRED, invented back in 1998 by Ewing and 

Green, was originally a base-calling program for automated sequencer traces. In later 

research, the term “PHRED score” has been used for the determination of quality and 
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accuracy between consensus sequences. The higher the PHRED score, the higher the 

accuracy. For example, a PHRED score of 10 stands for a 90% base call accuracy, and a 

PHRED score of 20 is correlated with 99% base call accuracy.74 For this specific study, 

the readings were averaged at 640 bps long with a PHRED score of 11.50. It was also found 

that these reads are consistent for the entire bp length. The amplicons mapped with an 

overall percentage of 99.6% for regions of hg19, while 79% of aligned reads accurately 

matched to bases. Notably, the representation of amplicons does not change accuracy based 

on the complexity of the sequence. Additionally, the researchers wanted to test their 

method with low frequency SVs. In a 1:100 dilutions, the run produced 4,058 2D reads 

from 270 of 512 channels. The average read length was 650 bps and had a PHRED score 

of 10.9. Overall, the researchers proved their methods can be conducted in a timely manner. 

For the two sequences (CDKN2A/p16 and SMAD4/DPC4) in this study, it took 15 minutes 

and 33 minutes respectively, to generate 450 reads.67 In comparison, 2nd generation 

sequencers can generate millions of reads simultaneously, but it can take hours to days to 

complete. The experiment indicated the ability of nanopores to serve as a reliable and 

efficient method of sequencing, allowing rapid detection of tumor-associated structural 

variants. The two limitations of MinIONTM, as noted by the researchers, were (1) a 

relatively high mismatch and index error rate and (2) a limited yield (on the scale of Mb or 

Gb). 
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Figure 2. Nanopore Library Prep Workflow. Oxford Nanopore barcodes were incorporated 

into amplicons by PCR- individually for each SV, then resultant reactions were pooled (A). 

After NEB End Repair and dA-tailing modules (B), hairpin and leader adapters were 

ligated on, each containing a motor protein. Only the hairpin protein contained a his-tag, 

which was used to enrich for molecules containing a leader adapter and his-tag (his-tag 

selection step not shown). Tether attachment (C) allowed for direct attachment of the 

molecules to the flow cell membrane. Within the MinION flowcell (D), DNA molecules 

are pulled through a protein pore (blue), with motor protein (orange) affecting speed of 

DNA translocation through the pore. One side of the DNA molecule is read, then the 

hairpin, then the second side. Both reads were aligned to produce a 2D consensus read. 

 

 

 

Compared to conventional genome-based methods, such as fluorescence in situ 

hybridization (FISH), fiber-FISH, array comparative genomic hybridization (aCGH) and 

paired-end mapping (PEM) (each of which have a read length of approximately 35 ~ 400 

base pairs (bps)),73, 75 nanopore allows for much more flexible read lengths (of a few bps 

to kbps). However, the average PHRED score of reads generated by MinION is still 

relatively low compared to other sequencers (e.g. Illumina, 454, Ion Torrent, PacBio, and 

others). At the moment, Illumina is the most popular DNA sequencer on the market. Still, 

depending on the equipment model and sample size, sequencing using Illumina can take 
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from 3-12 days to complete. Additionally, the current market price of Illumina ranges from 

$50,000 (MiniSeq) to over $6M (Illumina HiSeq X Five), costing significantly more than 

the nanopore-based sequencers. 

2.2.2 Transcription factors. The second most well-known causal factor of cancer 

is aberrant activity of transcription factors (TFs), which are often members of multigene 

families with common structural domains.3 TFs are the main regulators of gene expression 

and signaling pathways in all biological systems and bind to a specific sequence of DNA 

to promote or inhibit gene expression. In cells, a major portion of oncogenes and tumor-

suppressor genes are encoded by TFs.4, 76 Aberrant TF activity can occur due to changes in 

expression, protein stability, protein-protein interactions, post-translational modifications, 

and numerous other mechanisms.77 In a healthy cell, upstream transcriptional regulators 

highly regulate all genes with similar functions. However, changes in TF activity leads to 

deregulation of genes involved in promoting cancer cell proliferation, survival, and 

inducing angiogenesis and metastasis of tumors.4, 76  For example, nuclear TFs, the signal 

transducer and activator of transcription, has been linked to various human cancer cell lines 

and primary tumors, including leukemia and lymphoma, as well as breast, lung, pancreas, 

and prostate cancers.63, 79-87 

Various direct and indirect techniques have been used to characterize TFs, along 

with other sequence-specific DNA binding proteins, including electrophoresis, 

electrophoretic mobility shift assay, nuclear magnetic resonance, X-ray crystallography, 

atomic force microscopy, optical tweezers, and direct fluorescent visualization, among 

others.78, 88-92 However, most of these methods require some combination of chemical 

cross-linking between TFs and DNA, modification or tagging of the TF and DNA, and 
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amplification assays.  Furthermore, due to the complicated requirements, these methods 

would lack the ability to resolve fine details of the TF and DNA complex (i.e. partial versus 

full binding of the TF domains to DNA).78 The specific mechanism of TFs binding to DNA 

sequences is still under intensive study and is a major area of interest in molecular 

biology.78, 93  

Squires et al. used solid-state nanopores as biosensors for the characterization of 

DNA, RNA, and proteins (Figure 3). With the use of an electric field, the researchers  

could guide the polymers through a nanopore and identify individual molecules. The 

current-blockage patterns generated during translocation of charged molecules provides an 

abundance of information about TF local properties, as well as TF-DNA interactions.78 As 

previously noted, the regulation of TFs has not been well investigated, hence the use of 

solid-state nanopores could be a novel technique in describing these molecular interactions. 

As proof of technique, the Squires et al. has shown that their nanopores can distinguish 

between specific and nonspecific binding of TF, by analyzing the ion current of the 

canonical zinc-finger DNA-binding domain of Early Growth Response 1 (zif268). 

Characterization of the zif268 was accomplished using the distinct blockage patterns of the 

current within the nanopore.94 Through analyzing the data, the researchers found that there 

are three main types of blockages, existing mostly in five distinct patterns rather than 

randomly. These patterns have a direct correlation to preexisting data. Hence, the nanopore 

presents great potential in characterizing DNA complexes because of its ability to detect 

complex structures and protein conformations, with the possibility of removing TFs as 

needed. Squires et al. note that their nanopore sensor can identify small TFs in DNA as 
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well as distinguish between specific and nonspecific binding. This research technique 

allows information-gathering availability with respect to TF-DNA interactions. 

 

 

 

 
 

Figure 3. Distinguishing between specific and non-specific binding of TF—DNA with 

solid-state nanopore. Translocation event traces and proposed mechanisms for (A) specific 

binding, and (B) non-specific binding of TF to DNA.78 

 

 

 

2.2.3 Telomeres. On average, telomeres are shortened by 19 bps per year due to 

aging, oxidation, stress, mitotic activity of tissues, and lifestyle.95-98 When shortened to a 

critical length, telomeres lose their ability to protect the DNA chromosomes99 and restrict 

the proliferation of normal somatic cells.98 This leads to chromosomal fusion and 

degradation.100-101 In contrast, approximately 85% of human cancer cells can achieve an 

“immortality” status by maintaining and elongating telomeres via the de novo synthesis of 

telomeric DNA.100 Recently, a study was conducted on 47,102 individuals from the general 

population, where these individuals were followed for up to 20 years to find out the 
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relationship between telomere length and cancer. Although short telomere length is not an 

indication of cancer,98 it was observed that cancer patients with shorter telomere length had 

increased risk of early death. This result was observed in patients with lung and esophagus 

cancer, malignant melanoma, and leukemia.98 

Even though it has been years since the first research, the kinetics of telomeres in 

cancer cells remains elusive. At present, measuring the length of telomeres and observing 

the kinetics of folding are still challenging, as there is no gold-standard technique.102 In 

order to fully understand the role of telomeres in cancer prediction or therapy, it is essential 

to understand the kinetics of telomere folding and other conformational changes as a 

response to different living and environmental conditions. 

Work is currently underway to apply nanopore sensor in tracking the telomeric 

DNA G-quadruplex folding/unfolding (Figure 4). Several research groups have used 

biological nanopore to capture some or all four folded-structures of G-quadruplex, 

including hybrid (hybrid-1 and hybrid-2), basket, and propeller structures.47, 103-105 

Findings from these studies reported that even though the four G-quadruplex structures all 

folded from the same DNA sequence, they produced very different electrical signatures.105 

This was attributed to the overall shape and volume of each secondary structure. It was 

observed that both hybrid-1, -2, and basket forms had a diameter of 2.7 nm and 2.4 nm, 

respectively. Since the cis opening of the α-hemolysin pore has a diameter of 3.0 nm, these 

three folds can enter the large vestibule. However, the propeller fold, with a disk-shaped 

structure and diameter of 4.0 nm, exceeds the diameter of the nanopore cis opening and 

was unable to enter the vestibule.106 
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Figure 4. Capturing unfolding process of the four G-quadruplex structures with biological 

nanopore. (A) Schematic of the α-hemolysin nanopore, with the cis opening of 3.0 nm, 

constriction of 1.4 nm, and trans opening of 2.0 nm. (B) Folding structures and dimensions 

of G-quadruplex conformations: hybrid-1, hybrid-2, basket, and propeller. (C) G-

quadruplex fold entered and unfold inside the nanocavity of α-hemolysin nanopore, 

causing two distinct levels of blockage. (D) Except the propeller fold, all other G-

quadruplex can enter the cis opening of  α-hemolysin nanopore  without unfolding, but 

cannot pass through the pore constriction.114 (E) Models of the three conformations with 

the additional 5’-dA25 tail unraveling through α-hemolysin pore. Both hybrid and basket 

folds were able to enter the cis opening of the α-hemolysin pore, thus unraveled inside the 

pore nanocavity. On the other hand, propeller fold, because of its size, could not enter the 

nanopore. This conformation unraveled its structure outside of the pore, using the help of 

the 5’-dA25 additional tail.105 

 

 

 

Another inventive solution to capture and unravel G-quadruplexes is to employ a 

25-mer poly-2’deoxyadenosine tail (d25A-tail) on the 5’ end of the telomeric DNA. 

Applying this method, the Burrows group reported the analysis of various folding motifs 

of the telomere sequence, with and without the 5’-d25A-tails.105 Among the four loop 

topologies, only the basket fold was able to translocate through the nanopore without the 

addition of the homopolymer tail to the 5’ end. For the G-quadruplex to move through the 
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nanopore, it needs to unravel to a singular strand which would be able to translocate 

through the narrow β-barrel, and the remaining G-triplex has to roll within the vestibule. 

This is likely a favorable process for the basket fold because of its nearly spherical shape.107 

Even though the volume of the vestibule is large enough to accommodate all four G-

quadruplexes within its cavity, the narrow entrance of the vestibule prevented the propeller 

fold from entering the nanopore. However, with the addition of the 5’ tail, the propeller 

fold was able to circumvent the problem of entering the cavity, and yet still had a very fast 

translocation signature. This is attributed to the fact that the propeller fold was able to roll 

outside of the vestibule while an electric force was applied to the dA25-tail as it threaded 

through the ion channel, without having any molecular interactions or steric hindrance that 

would have been experienced on the interior of the vestibule.105 

In the light of those previous studies, for the first time, the unfolding kinetics of 

human i-motifs were studied using the α-hemolysin nanopore. Under acidic conditions, 

cytosine (C)-rich DNA sequences can adopt i-motif folds, since the hemi-protonation of  

C- rich strands allow C+•C base pairs to form.54 The Ding et al. conducted experiments on 

the human i-motif sequence at a constant ionic strength, but using various pH (5.0 – 7.2). 

Since the dimension of an i-motif (2.0 nm x 2.0 nm) is smaller than the cis opening (~3.0 

nm) of the α-hemolysin pore, it can enter the pore without unfolding and be captured in the 

nanocavity.54 Hence, a d25A tail was attached to the sequence, in order to increase the 

unfolding rate of i-motif. Upon the attachment of d25A, it was observed that at pH 5.0, the 

folded structure entered the α-hemolysin pore, yielding characteristic current patterns. 

However, when the pH were at 6.8 and 7.2 (higher than the transition pH 6.15), the 

percentage of strands still folded was 4% and 2%, respectively. Furthermore, the force 
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applied in this study was analogous to the forces exerted on genomic DNA by RNA 

polymerases II (5-20 pN) and DNA helicase (6-16 pN).54 Hence, these studies strive to 

show the potential of α-hemolysin as part of biosensor development, aiding in our 

knowledge of the lifetimes of i-motifs of telomere sequences, and their biologically 

relevant structures, which can be used as drug delivery targets for cancer treatments.108 

These findings are steps toward a better understanding of the folding and unfolding 

mechanisms of the telomere. When pre-detecting different cancer types, conventional 

methods, such as FISH, Southern blot, and quantitative-PCR, require complicated meta-

analyses, chemical-crosslinking and intensive preparation. This can lead to inconsistent 

results.98, 109-111 Whereas nanopore analysis, lacking all those complications, allows a better 

understanding of the kinetics and mechanisms, aiding in the analysis of how different 

oxidation, stress and factors affect the length of telomeres, as well as the correlation 

between cancer development and telomere immortality.  

2.2.4 DNA methylations. 

 

2.2.4.1 Hyper- and hypomethylation of CpGs. In humans, methylation of DNA is 

an epigenetic modification that transfers a methyl group from S-adenosyl-methionine to 

cytosine residues, forming 5-methylcytosine (5-mC). In mammalian cells, methylation of 

CpGs can directly or indirectly repress gene expression. For example, hypermethylation of 

CpG islands in the promoter region can directly lead to transcriptional silencing of tumor-

suppressor genes. On the other hand, methylated CpGs can indirectly interfere with 

transcription to prevent the binding of basal transcriptional machinery or ubiquitous TFs. 

This process contributes to all of the typical hallmarks of a cancer cell originated from 

tumor-suppressor inactivation.112 With aging, cell deregulation provides mutation 



www.manaraa.com

 

23 

 

accumulation and epigenetic alterations (i.e. aberrant methylation in DNA) the chance to 

build up, causing proliferative advantages and genomic instability. Aberrant DNA 

methylation, including loss of methylation (hypomethylation) and gain of methylation 

(hypermethylation), has been classified as a common causal factor of many cancers.113-117 

For instance, hypermethylation is linked to various types of cancers, including lung, 

prostate, breast and colon cancers,118-121 while hypomethylation of CpGs has been reported 

to be associated with kidney, liver, pancreas, lung, cervix, stomach and uterus cancers.122-

127 Hence, detecting aberrant DNA methylation can have an important role in cancer 

treatment and precancerous detection.37, 56 

The overall level of 5-methylcystosine contained in the cell sample can be 

quantified using high-performance liquid chromatography (HPLC), high-performance 

capillary electrophoresis (HPCE), bisulfite sequencing, methylation-specific PCR, among 

many other methods.128-134 However, these methods have certain drawbacks. For example, 

although HPLC and HPCE can accurately quantify the total amount of methylated CpGs, 

they have incomplete restriction enzyme cutting, offer limited region of study, require 

substantial amounts of high molecular weight DNA, and are labor intensive. Similarly, 

with PCR-based methods, only the methylation status of CpG sites that are complementary 

to the primers can be interrogated. Thus, the predominant methylation patterns in the 

sample may not necessarily reflect the actual results (false positive results). 

With nanopore analysis, current methods used in the detection of aberrant CpGs 

methylation usually employ either a methylation specific labeler, or an electro-optical 

tagging.56-57, 135 The first method, as proposed by Shim et al., employs an engineered 

methyl-CpG-binding domain protein (i.e. MBD1x or Kaiso Zinc Finger proteins) as a 
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selective labeler to detect and quantify hypermethylated CpG sites in double-stranded DNA 

(dsDNA) ).56, 135 As the DNA translocated through the nanopore,  the presence of 5-

mC·labeler complexes caused a signature current blockage, allowing the detection and 

coarse quantification of 5-mC sites on a single molecule.135  Indeed, this method set an 

initial application in screening for the presence of hyper- and hypomethylated DNA. 

Moreover, Shim et al. pointed out that with the versatile binding affinity of KZF to various 

methylation patterns, the studied assay can allow various patterns to be screened.56 Since 

nanopore analysis requires low volumes of DNA for testing, the technique will be more 

applicable and practical for clinical use. Without the need of DNA replication and 

amplification, detecting CpG methylation using nanopores requires much less labor in 

comparison to other conventional methods. 

The second method, as previously discussed, uses an electro-optical solid-state 

nanopore to detect and quantify hypomethylation in DNA.57 In this approach, enzyme 

DNA MTases was assisted by small molecular weight synthetic cofactors to catalyze a one-

step enzymatic reaction. This enzyme-cofactor complex was directly conjugated onto 

fluorescent probes and attached to the unmethylated CpG sites. The Meller group was able 

to detect and differentiate between fully methylated, partially methylated and unmethylated 

dsDNA, using ultrasensitive electro-optical nanopore sensing as the tool for single-

fluorophore multicolor quantification. Unlike MBPs, DNA MTase only labeled 

unmethylated CpG sites of the target DNA. This allowed the direct targeting of 

hypomethylated CpG sites in the genome (i.e. promoter regions of oncogenes). 

Furthermore, this electro-optical solid-state nanopore showed a high potential for 

employing multiple DNA MTases and other epigenetic biomarkers. With the aid of those 
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biomarkers, orthogonal labeling/sensing of 5-mC can be achieved in the future.57 Further 

research must be done in order to develop a calibrated scale to count the number of 

unmethylated CpGs in the target sequence. 

2.2.4.2 Other variants of CpGs methylations. The family of Ten-Eleven 

Translocation (TET) proteins have been shown to oxidize methylcytosine (mC) into 

hydroxymethylcytosine (hmC) and further oxidize hmC into formylcytosine (fC) and 

carboxylcytosine (caC) (Figure 5).136-139 5-hmC normally exists at a high level in self-

renewing and pluripotent stem cells.136, 140 Both mc and hmC influence mammalian 

embryonic stem cell maintenance,141-142  angiogenesis,143 and development.144 Thus, hmC 

is a promising molecular biomarker with predictive and prognostic value.145 As for fC and 

caC, there is still very little research being done. Because  the topic has just recently been 

discovered, we currently lack a robust method to distinguish between these five chemical 

modifications of cytosine.  Even distinguishing between mC and hmC is a challenge for 

available methods.142, 146 

The presence of bulk 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-

hmC) on ss- and dsDNA has been successfully detected and distinguished using both solid-

state and biological nanopores.147-149 For instance, the Drndic group proposed a method 

using solid-state nanopore to discriminate two different structures that translocated through 

the pore (5-mC and 5-hmC). Upon the addition of 3kbp dsDNA, a sequence of current 

blockage was generated, in which the magnitude of each spike was related to the excluded 

volume of biopolymer that occupies the pore. From the differences in ΔImax values, Wanunu 

et al. was able to discriminate between 5-mC and 5-hmC. Shorter end-to-end distance of 

the more polar 5-hmC indicated an increased flexibility in 5-hmC comparedg to cytosine 
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and 5-mC. Moreover, it was shown that different proportions of 5-hmC in DNA fragment 

containing cytosine and 5-mC can be quantified using ionic current signal.147 The second 

device used in the detection of CpG methylation variants employed both the wild-type 

phi29 DNA polymerase (phi29 DNAP) and MspA in the same assay.148-149 With this unique 

approach, the Wescoe et al. reported a direction detection of all five cytosine variants (C, 

mC, hmC, fC and caC). In this single-molecule tool, a phi29 DNA polymerase drew 

ssDNA through the pore in single-nucleotide steps and the ion current through the pore 

was recorded.148 Overall, the  single-pass call ranged from approximately 91.6% to 98.3% 

depending on neighboring nucleotides.148-149 Because the knowledge of the five cytosine 

variants, especially fC and caC, is still very limited, the possibility of these variants having 

an impact on genome-wide demethylation or other modifications in cancer cells should not 

be eliminated. 

These studies have shown nanopore analysis potential as a robust and efficient tool 

for the study of DNA methylation. The technique can directly detect CpG methylation 

without the need for DNA amplification or complicated preparation processes. Due to its 

special characteristics, methylation of CpG is usually erased during replication and 

amplification. Hence, nanopore analysis could be a more practical and reliable method to 

screen and detect aberrant DNA methylation in cancer patients.  
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Figure 5. Distinguishing variants of cytosine with biological and solid state nanopores. (A) 

Chemical structures of cytosine and its variants. First row: mC (left) and fC (right). Second 

row: cytosine. Third row: hmC (left) and caC (right).123 . (B) Schematic of the Phi 29 

DNAP-MspA complex. MspA pore constriction is shorter and narrower compared to α-

hemolysin(as shown in the top), allowing short subtle structural changes to be 

distinguished. (C) A typical trace of DNA translocation through the  Phi 29 DNAP – MspA 

complex.122 (D) Detection of DNA methylation with methyl binding proteins (MBP) using 

solid state nanopore. MBPs bind to methylated CpGs on DNA, allow the detection and 

differentiation between unmethylated, hypermethylated and locally methylated DNAs. (E) 

Detection of DNA methylation with optical-tagging using solid-state nanopore. 

 

 

 

2.2.5 Histone-DNA modification. Aberrant DNA-methylations are also linked to 

the presence of aberrant modifications in histones,150-154 which are the gene activity’s 

dynamic regulators. Histones go through several post-translational modifications, such as 

acetylation, methylation, phosphorylation, ubiquitylation and others. Specifically, 

methylation and acetylation of lysine residues on the nucleosomal core histones play an 
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essential role in gene expression and chromatin structure regulation.155 In normal cells, 

histones in DNA sequences are hypoacetylated and hypermethylated. The two key 

regulators of histone modifications are histone deacetylases and histone methyltransferases 

(MTases), which are associated with methyl-binding proteins (MBPs) and MTases.155-157 

Several studies have been conducted on the translocation or unravelling of a 

nucleosome and its subunit structure through nanopore.158-160 Generally, it was found that 

DNA-histone complexes lead to higher applied voltage required and overall longer time 

periods to translocate through the nanopore, most likely due to either: (1) the bulky disk 

shape nucleosome experiencing a higher drag force comparing to a bare dsDNA, (2) the 

positively charged histone core lowering the total net charge density of nucleosomes, 

causing the translocation speed in electrophoresis to reduce, and (3) the unwinding process 

of histone-DNA complex.159, 161 

As previously discussed, epigenetic modifications have been known to affect the 

structural integrity and stability of nucleosomes. Given this fact, it was hypothesized that 

methylation of CpGs on dsDNA would affect the way nucleosomes fold and/or unravel. 

To test this hypothesis, the Langecker et al. investigated the influence of DNA methylation 

on the stability of unlabeled mononucleosomes.160 Similar to the results reported in other 

studies, under the electrophoretic force, the nucleosomal DNA tail entered the pore and 

gradually unraveled under increasing voltage, which was much higher in comparison with 

free DNA capture.162 This experiment was repeated on nucleosomes with and without 

methylated DNA sequences, yielding that methylation of CpGs did not affect the 

nucleosome assembly, stability, or unraveling trajectories. This finding suggested that 

histone modifications (e.g. acetylation and phosphorylation) play a much more dominant 
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role in nucleosomal maintenance than DNA methylation. The confirmation of methylation-

independent nucleosome stability indicated other possible mechanisms by which DNA 

methylation alters gene expression, for example, modulating the binding of transcription 

activators/repressor.160  

The nanopore-based studies outlined herein lay the groundwork for understanding 

and predicting the influence of different histone core modifications on the nucleosome 

structure,160 about which our knowledge is still quite limited. Unlike conventional methods 

(e.g. single-gene chromatin immunoprecipitation (ChIP), ChIP with a DNA array (ChIP-

on-chip),163-164 HPLC, HPCE, and many others), nanopore devices are more versatile, 

because they do not rely heavily on the quality of the polyclonal antibodies or antibodies 

that are available.154 Although the study here indicated that DNA methylation does not 

affect the nucleosome assemble, further studies need to be done in order to confirm the role 

of DNA methylation in other processes (i.e. regulating transcription activators/repressors 

binding, or gene expressions), as well as the relationship between acetylation and 

phosphorylation on nucleosome assembly and chromatin stability.  

2.2.6 MicroRNA. MiRNAs are small endogenous biomolecules that are in length 

of 18-22 bps. They play an important role in embryonic differentiation, hematopoiesis, 

cardiac hypertrophy and numerous cancer-related processes, including proliferation, 

apoptosis, differentiation, migration and metabolism.165-166 Because a single miRNA can 

target up to hundreds of mRNAs,167 an aberrant miRNA expression may affect several 

transcripts and cancer-related signaling pathways. In cancer cells, because of the genetic 

diversity of tumors and cancer cell lines, an individual miRNA can be up-regulated in one 

type of cancer and down-regulated in another.167 Overall, miRNAs function depends on 
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their targets within the specific tissue.3 Usually, the up-regulated miRNAs function as 

oncogenes by down-regulating tumor-suppressor genes, while the down-regulated 

miRNAs function as tumor-suppressor genes by down-regulating oncogenes.  

 Detection of miRNAs faces several challenges, mainly due to the short length of 

miRNAs. Some quantitative methods have been applied to miRNA detection with 

enhanced sensitivity and/or selectivity, including quantitative reverse transcription real-

time polymerase chain reaction (qRT-PCR) assays, microarrays, colorimetry, 

bioluminescence, enzyme turnover, electrochemistry, molecular beacons, deep sequencing 

and single-molecule fluorescence.168-171 Unfortunately, these techniques incur DNA 

amplification errors, unavailable internal controls, and cross-hybridization. Also, the short 

sequence of miRNAs makes the designing of probes and primers even more challenging.168, 

170 

MiRNAs have been investigated as potential molecular biomarkers, because their 

expression levels are associated with various diseases.172 For instance, each year, lung 

cancer causes approximately 1.2 million deaths worldwide.173 Since there is no effective 

screening procedure available, more than 70% of lung cancer patients were diagnosed with 

less than a 15% chance of a 5-year survival rate.173 More than 100 types of miRNAs have 

been identified to deregulate lung cancer progression.172 Noticeably, high levels of miR155 

and low levels of let-7a-2 have been associated with a significantly poor prognosis and 

shorter survival times in lung cancer patients.174-175 Many research groups have used 

biological and solid-state nanopores for the detection of miRNAs in different tissues 

(Figure 6). For example, the solid-state nanopore was used for rapid detection of probe-

specific miRNAs (miRNA-122a and miRNA-153).176 Specifically, for every 1 fmol of 
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miRNA duplex per mL solution, the capture rate was 1 molecule per second.  In this study, 

the p19 protein from the Carnation Italian ringspot virus was used to enrich miRNA-122a 

and miRNA-153. Since miRNA concentrations were 1% relative to other cellular RNAs, to 

detect a specific miRNA using a nanopore sequence, an enrichment step was required.176 

p19 binds 21-23bps dsRNA in a size-dependent, but sequence-independent manner. 

Additionally, the highly affinitive and selective viral p19 protein does not bind ssRNA, 

tRNA or rRNA. This eliminates the possibility of false results from mismatched binding.177 

Detection of 250 molecules in 4 minutes was sufficient to determine miRNA concentration 

with 93% confidence.176 

A different approach from using viral proteins for probe-specific miRNAs detection 

is to employ an engineered-probe with a programmable sequence to differentiate single 

nucleotide differences in miRNA family members.172 Wang et al. proposed a system that 

enabled sensitive, selective, and direct quantifications of cancer-associated miRNAs in the 

blood. In this study, the group constructed a robust protein nanopore-based sensor that 

utilized an oligonucleotide probe (P155) to detect aberrant expression of miRNA-155 and 

let-7a-2 from lung cancer patients.172 The generated signature electrical signals provided a 

direct and label-free detection of the target miRNA in a fluctuating background, such as 

plasma RNA extract.172 Probe (P155) has a programmable sequence and can be optimized 

to achieve high sensitivity and selectivity. Additionally, using chemical modifications, 

distinct probes can further be engineered with specific barcodes, allowing multiple 

miRNAs to be simultaneously detected. Furthermore, with the development of miRNA 

markers, manipulatable miRNA profile detection nanopore arrays can be constructed for a 

noninvasive screening and early diagnosis of cancer.172 
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Figure 6. Detection of a miR-155 using using solid-state and biological α- Hemolysin 

nanopores. (A) Schematic of miRNA detection with viral proteins for probe-specific 

miRNA, using solid-state nanopore.  Protein from Carnation Italian ringspot virus was used 

to enrich miRNA form background fluid. (B) Detection of probe-specific miRNA using 

alpha-hemolysin biological nanopore. MiRNA-155 (shown in red) was attached to a DNA 

P155 probe (shown in green). (C) At 8.0 pH and 100mV, translocation of the miRNA-

155P155 resulted in various current blockage patterns. (C) A typical current blockade with 

three characteristic blocking levels, representing the mechanism of miRNA-155P155 

complex dissociation and translocation through the pore (as shown in the right-hand 

side).176 

 

 

 

 

Compared to qRT-PCR assays, microarrays, colorimetry, bioluminescence, and 

other current methods,168-171 nanopore arrays is a simpler, faster method that can be utilized 

to detect miRNAs in cancer patients. This approach lacks all the complications that 

conventional methods have, such as DNA amplification errors, unavailable internal 
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controls, and cross-hybridization. Early detection is one of the most crucial contributors to 

a higher survival rate, especially lung cancer patients.173 

2.3 Summary and Conclusion 

In this chapter, we have concisely reviewed the main genetic and epigenetic causal 

factors of cancer, as well as summarized how nanopore have been used in the research of 

each factor (Table1). Thanks to several unique features of this emerging technology, the 

nanopore-based analysis offers four main benefits: First, nanopore analysis offers long 

reads of genomic DNA (>10 kB). Therefore, linkages between modified cytosines may be 

revealed that are biologically significant and otherwise difficult to discern. For example, it 

was shown that histone-DNA interaction is not affected by methylation of DNA. Also, for 

the first time, differences between caC, fC, and hmC from mC were successfully 

distinguished. Second, the genomic DNA is read directly as it transports through the 

nanopore. Thus, errors (false-positive results) caused by copying do not occur. Third, with 

biological nanopore membranes, the study of biomolecules’ folding-unfolding kinetics and 

mechanisms are possible to accomplish. Furthermore, the DNA fragment can be retained 

in nanopore indefinitely, allowing rereads of a captured DNA fragment.149 Finally, many 

conventional methods are still impractical for clinical testing, because these methods 

require highly trained experts, intensive labor, a high capital cost, and a large footprint. 

With nanopore technology, there are no such requirements, offering more flexibility and 

practicality for research labs and clinics.  

Although the concepts of nanopore analysis in early cancer detection are 

exceptionally promising, several key technological challenges must be addressed before 

this method can be implemented in clinical uses. First and foremost, the biggest drawback 
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of nanopore-based methods is high mismatch and error rates. Because the nanopore 

membrane thickness, especially with respect to biological nanopores, is relatively large 

compared to a nucleotide, nanopore sensitivity is still low at the single-nucleotide level. 

Furthermore, even though different DNA conformations and foldings yield distinguishing 

characteristic current blockades, information about the molecular structure cannot be 

determined by nanopore membrane alone in order to confirm the exact structure that causes 

a signature blockades. 

In utilizing nanopore technology, researchers need the aid of other equipment, such 

as circular dichroism (CD), FRET, FISH, among many others. This limits the use of 

nanopore membranes as an independent, stand-alone tool for molecular studies in general, 

and early cancer detection, specifically. Moreover, since one single biological molecule 

can quickly adopt multiple, complex conformations under different environments, many 

research groups choose to use short/simplified sequences in their nanopore studies. Hence, 

the complexity of cancer cells has not yet been demonstrated and/or fully investigated with 

nanopore membranes.  
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Table 1  

Summary of nanopore applications in detecting cancer markers 
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Chapter 3 

 

Biophysical Properties of DNA - Investigation of Compacted DNA Structures 

Induced by Na+ and K+ 

 

3.1 Abstract 

 DNA compaction is a highly promising method for gene therapy and delivery. 

Experimental conditions to induce these compacted DNA structures are often limited to 

the use of common compacting agents, such as cationic surfactants, polymers, and 

multivalent cations. In this study, we showed that in highly concentrated buffers of 1M 

monovalent cation solutions at pH 7.2 and 10, biological nanopores allowed real-time 

sensing of individual compacted structures induced by K+ and Na+, the most abundant 

monovalent cations in human bodies. Since the binding affinities of each nucleotide to 

cations is different, the ability of a DNA strand to fold into compacted structure depends 

highly on the type of cations and nucleotides present. Our experimental results were 

favorably comparable to findings from previous molecular dynamics simulations for DNA 

compacting potential of K+ and Na+ monovalent cations. We estimated that the majority of 

single-stranded DNA molecules in our experiment were compacted. From the current 

traces of nanopores, the ratio of compacted DNA to linear DNA molecules was 30:1 and 

15:1, at a pH7.2 and pH10, respectively. Our comparative studies revealed that Na+ 

monovalent cations had a greater potential of compacting the 15C-ssDNA than a K+ cation 

did. This chapter was adapted from our previously published paper (Vu, Trang, Shanna-

Leigh Davidson, and Jiwook Shim. “Investigation of compacted DNA structures induced 

by Na+ and K+ monovalent cations using biological nanopores.” Analyst 143.4 (2018): 

906-913.) 
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3.2 Introduction 

In an aqueous solution, DNA is a long, highly charged polymer, and is usually in 

an elongated conformation due to strong repulsion forces between the negatively charged 

phosphate groups on the DNA backbone.178 Upon the addition of compacting agents, DNA 

can quickly go through a conformational change, mainly due to the neutralization of 

negatively charged DNA through cation binding.178-179 Interaction of cations with the DNA 

phosphate backbone has been known to induce several DNA phase separation processes, 

including DNA compaction, condensation, aggregation, and precipitation, without a clear 

distinction between these processes.180 Previous literatures have intensively studied and 

reviewed several in vivo and in vitro compacting agents, including multivalent cations,181 

polycations,182 neutral polymers,183 cationic nanoparticles,184-185 and surfactants.186-188 In 

addition, the presence of monovalent cations can also promote DNA compaction processes 

in both concentrated and diluted solutions of DNA.180, 189-195 Several previous studies have 

investigated the role and mechanism of cations in the process of binding and compacting 

DNA.184-185 However, the existence of the DNA compacted structure has not been 

discussed in the nanopore analysis setting yet, mainly due to the complex quantum-

chemical mechanism of the DNA compaction process.  

In this chapter, we used 𝛼-hemolysin NPs to capture the cations-induced compacted 

structure of a single-stranded DNA with a specific sequence containing only cytosine 

nucleotides (5’-(CCC)5-3’). In order to investigate the ability of Na+ and K+ monovalent 

cations as compacting agents for ssDNA, studies were conducted with buffers containing 

high salt concentration at various pH values.  
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3.3 Methods 

3.3.1 Chemicals. Chemicals and reagents used in the experiments were purchased 

from the following vendors: 1,2-diphytanoyl-sn-glycero-3-phosphocholine (Avanti Polar 

Lipids); pentane (Sigma-Aldrich); potassium chloride (99.5%, Sigma-Aldrich); sodium 

chloride (Sigma – Aldrich); Tris base (Promega); Ethylenediamine Tetraacetic acid 

(EDTA) disodium salt dehydrate electrophoresis crystalline powder (Fisher BioReagents); 

agarose (Bio-Rad); pentane (Fischer Chemical), hexadecane CH3(Ch2)14CH3 (Avantor); 

and hydrochlodric solution 1M (LabChem). Synthetic oligonucleotides (Integrated 

Technology) with the following sequences were used: 5’-CCC CCC CCC CCC CCC – 3’. 

The control sample is an 18-bases ssDNA with the sequence of 5’-

TAATCATCGCGTACTAAT-3’. Salt solutions were buffered with 10mM Tris and 

titrated with HCl until the required pH of 5.0, 7.2, or 10.0. DNA solutions were suspended 

in a buffer solution containing 10mM Tris, 1mM EDTA, pH 8.0 at room temperature before 

usage.  

3.3.2 Circular dichroism. CD spectra were collected using the Jasco CD 

spectropolarimeter, model J-810. All measurements were measured at 15oC as maintained 

by the temperature-control units affiliated to the spectrometer. All samples used for CD 

measurements contained the same salt (1M) and ssDNA (1 𝜇M) concentrations, as used in 

the single-molecular study. Spectra were captured in the 220-320 nm wavelength, 1.0 nm 

bandwidth, 50 nm/min scanning speed, and a standard sensitivity. 

3.3.3 Experimental setup. The experiments herein were performed following 

previously described protocols.45, 196-198 Briefly, a Teflon film divides the testing chamber 

into two separate compartments, named cis and trans chambers, to which negative and 
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positive electrodes are attached to, respectively. Artificial lipid bilayer, acting as an electric 

insulation, is formed over a premade orifice of 100𝜇m in diameter in the Teflon film.  𝛼-

hemolysin (𝛼-HL), a toxin released by the Staphylococcus aureus bacterium, is well known 

for its ability to form a mushroom-shaped protein channel with a well-defined structure, as 

well as dimensions. Specifically, the 𝛼-HL consists of a cis-opening (2.6nm), a nano-

constriction (1.4nm), and a trans opening (2.0nm).52 When 𝛼-HL protein is introduced to 

the cis chamber, it can insert a mushroom-shaped channel into lipid bilayer, connecting the 

cis and the trans sides. DNA or any other charged biomolecules are then injected to the cis 

chamber. Under an applied current, DNA molecules are driven through the 𝛼-HL 

nanopore, causing a current-drop (blockage). A lipid bilayer, 1,2-diphytanoyl-sn-

glycerophosphatidylcholine (Avanti Polar Lipids), was formed spanning the hole, creating 

a planar layer of insulation. The cis and trans chambers were both filled with symmetrical 

salt solutions of 1M concentration, containing either NaCl or KCl as per the testing 

conditions. The protein nanopore, α-hemolysin, was injected into the bilayer on the cis side, 

creating a single open channel joining the two chambers. A final concentration of 1 𝜇𝑀 

15C-ssDNA was introduced to the cis chamber. Ag/AgCl electrodes (1.5% Agarose in 3M 

KCl) was attached to each of the cis and trans chambers, with the cis chamber being 

grounded such that a positive voltage would drive the negatively charged DNA molecules 

through the nanopore channel and into the trans chamber. Data acquisition included an 

electrophysiological setup, with picoampere (pA) current traces being recorded as DNA 

molecules moved through the single channel. 
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3.3.4 Single channel analysis. An Axopatch 200B patch-clamp amplifier was 

employed with Clampex 10.7 software (Molecular Device Inc.) to record and acquire data 

through a Digidata 1550B A/D converter (Molecular Device Inc.) at a sampling rate of 20 

kHZ, and an analogue, eight-pole, low-pass Bessel filter of 5kHz. The data were analyzed 

using Clampfit 10.7 (Molecular Device Inc.), and Excel (Microsoft). Single-channel 

currents were determined using amplitude histograms by fitting the peaks to Gaussian 

functions. Dwell-time histograms fitted to an exponential distribution allowed us to 

determine the duration of short-lived blocks for DNA translocation. Molecular modeling 

and chemical structures were created using Maestro (version 2015-4, Schrödinge Suite). 

All graphical presentations were organized and cleaned up using Illustrator (Adobe). 

3.4 Results and Discussion 

 

We chose single-stranded 15-mer oligonucleotides consisting only of cytosine, 

annotated as 15C-ssDNA, as a proton-sensitive DNA strand to study the compacted DNA 

structure. To emphasize the unique characteristic of 15C-ssDNA to adopt compacted 

structures, control experiments were performed on an 18-bases ssDNA sequence 

(containing all four nucleotides: A, T, C, G). Previous studies have shown that C-rich 

ssDNA has the ability to form i-motif structures under slightly acidic environments (below 

the transitional pH 6.15), and sustain in linear form under neutral or basic environments 

(pH higher than 6.15).199-202 Thus, the cytosine-only sequence chosen for the current study 

makes this DNA molecule highly improbable to form stem-loop intramolecular base 

pairings (i.e. compacted structures) at pH ≥ 6.15. Moreover, a previous study showed that 

using solid-state nanopore, the probability of DNA knots observed in long DNA molecules 

(~2kbps) is 1.83%.203 Thus, the short length of the chosen sequence rules out the possibility 
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of DNA knots formation in this study. All experiments herein were conducted with 15C-

ssDNA, under constant electrophoretic forces at 100, 120, or 140mV, and symmetrical salt 

concentration of either 1M NaCl or 1M KCl in both cis and trans chambers. Buffers with 

various pH levels at 5.0, 7.2, and 10 were used in the experiments in order to investigate 

the effect and compaction potential of monovalent cations on both folded and unfolded 

single-stranded DNA. All events are characterized by their current blockage amplitude 

(%Ib/Io, where Ib and Io are current amplitudes of the blocked and the empty pore), 

translocation time through the nanopore (𝑡𝑏), and frequency (𝑓). All buffers are prepared 

with 10mM Tris and 1mM EDTA and, hereafter, all buffers are named according to the 

type of cation present (either K+ or Na+) and pH level of the buffer. For example, Na5.0 

indicates 15C-ssDNA sample in 1M NaCl at pH 5.0. Current – voltage (I-V) curves of all 

experiments fit the characteristic shape of the 𝛼-hemolysin nanopore I-V curve (Figure 7). 

 

 

 

 
 

Figure 7. IV curves of the experimental conditions, containing 1M of either KCl or NaCl, 

at 7.2 and 10 pH. All I-V curves fit the characteristic I-V plot of an -hemolysin nanopore. 
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3.4.1 Effect of monovalent cations on the folded, i-motif DNA structure. To 

analyze the nanopore ionic current signal for the fully-folded i-motif structure, we first 

examined the translocation properties of 15C-ssDNA at pH 5.0 in both K5.0 and Na5.0 

buffers. At pH 5.0, when the 15C-ssDNA was added to the cis chamber, and 

electrophoretically driven through the 𝛼-hemolysin NP at 100, 120, and 140mV, long-lived 

partial current blockage events were observed in both K5.0 and Na5.0 samples (Figure 8), 

indicating the presence of i-motif inside the nanopore. Capture and analysis of the fully 

folded i-motif structure in K+ environment has been investigated using α-hemolysin 

nanopore before.54 Under slightly acidic conditions, the cytosine-rich DNA sequence 

becomes hemi-protonated, allowing for the formation of the i-motif structure (Figure 8A). 

This i-motif structure is approximately 2.0 x 2.0nm in diameter, 54 thus smaller than the cis 

entrance to the mushroom-head shape nanocavity, but larger than the constriction and β-

barrel of the nanopore. Thus, the folded structure of i-motif can enter the channel and reside 

in the nanocavity. Then the folded i-motif structure can either exit back to the cis opening 

or translocate through the nanopore to the trans side after unfolding in the nanocavity. The 

process can last up to several seconds or minutes, causing event blockades with different 

durations and amplitudes, as shown in Figure 8B (K5.0 and Na5.0), with no real statistical 

difference between dwell times of i-motif structure in K+ and Na+ environments at pH 5.0. 

Our data herein are fully consistent with previous studies, which demonstrated that half-

life, 𝑡𝑓1/2, of the i-motif structure at pH 5.0 can vastly vary from seconds to minutes.204-205 

In these studies, 𝑡𝑓1/2, of a i-motif structure represents the amount of time it takes for half 

of the sample population to become folded.205  
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Figure 8. Formation of i-motif at pH 5.0. (A) Under slightly acidic conditions, the cytosine-

rich DNA sequence is hemi-protonated, and can adopt an i-motif structure. (B) reflects the 

residence of i-motif structure inside the NP for both samples, containing either 1M KCl 

and 1M NaCl, at pH 5.0. The residence of i-motif structure inside the nanocavity causes 

current blockages that can last up to several seconds or minutes, with %I/Io ~ 50-60%. No 

event with %I/Io < 30% was observed in both samples (K5.0 and Na5.0). (C) Circular 

dichroism measurement confirmed the existence of i-motif at pH 5.0 in both K5.0 and 

Na5.0 samples, which show a typical positive peak at 285nm and a negative peak at 265nm. 

Other samples at higher pH do not exhibit the i-motif characteristic peaks. Overall, the 

main differences in CD spectrum are between samples with a different pH, but not between 

those containing different types of cations (K+ versus Na+) . Samples were labelled per the 

type of cation in the buffer (either K+ or Na+), followed by the solution pH value (i.e, Na5.0 

means experiment was conducted in 1M NaCl buffer solution, pH 5.0). 

 

 

 

Circular dichroism (CD) spectroscopy analysis in our laboratories confirmed that 

the DNA molecules K+ and Na+ buffer solutions reveal a typical i-motif conformation only 

at low pH of 5.0 (Na5.0 and K5.0 samples), but a random coil at neutral and high pH 

(Na7.2, K7.2, Na10 and K10 samples). Specifically, the CD spectrum of both Na5.0 and 

K5.0 samples showed a strong positive peak near 285nm, a negative peak near 262nm, and 

a cross over at 275nm, indicating the definite presence of i-motif structure in the 

solutions.206 In contrast, at pH 7.2 and 10.0, all of the samples (Na7.2, Na10, K7.2, and 

K10) exhibited a dramatic decrease in the CD signal and completely lost the characteristic 

i-motif peaks. In general, the i-motif characteristic peaks were not present in samples with 
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a higher pH, thus confirming that differences in CD spectra are due to differences in pH, 

and not due to usage of different cations (K+ versus Na+) in samples.  The results obtained 

from the event data traces of K5.0 and Na5.0 (Figure 8B) and CD spectrum indicate that 

under slightly acid conditions (pH 5.0), there is an absence of compacted DNA structure 

going through the α-HL NP. The binding (or lack thereof) of monovalent cations to ssDNA 

does not induce DNA compaction at pH level of 5.0. Thus, it is hypothesized that the C+-

C base pairing has a significantly higher affinity and can last much longer than cation-DNA 

binding. Currently, it is unclear whether or not the binding of monovalent cations can slow 

down the translocation speed of a fully-folded i-motif structure through the nanopore.  

3.4.2 DNA compaction induced by 𝐊+and 𝐍𝐚+ monovalent cations. In order to 

investigate the effect of monovalent cations on ssDNA compaction, single-channel 

nanopore analysis of the fully unfolded, linear 15C-ssDNA was conducted at pH 7.2 and 

10 (Figure 9 and Figure 10). In an earlier single-channel study of C-rich DNA 

translocation, it was shown that as the pH level was raised to above 6.15, most i-motif 

structures unfolded into linear DNA, resulting in mostly short-lived blockage events.54. 

Indeed, we observe a similar characteristic trend of unfolded, single-stranded DNA 

translocation (%Ib/Io ≥ 80%) in all samples at both pH 7.2 and 10. However, in contrast to 

the previous finding with specific sequencing of i-motif, our experimental data with 

cytosine only sequencing DNA oligos exhibited two types of blockages: Type 1 is the 

translocation events of linear ssDNA (%Ib/Io ≥ 80%), and Type 2 events are caused by the 

encounter of DNA compacted structures with the cis opening of the nanopore (%Ib/Io ~ 

30%), as shown in Figure 9A-B and Figure 10A–B. A transmembrane voltage (+100mV) 

was applied from the trans side, with the cis side grounded 
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Figure 9. DNA translocation through nanopore at pH 7.2.  Data traces of (A) K7.2 and (B) 

Na7.2 were collected at 120mV applied current. Both samples exhibit two main types of 

events: Type 1 are translocation events of DNA (%I/Io > 70%), and Type 2 are DNA 

compacting events (%I/Io < 70%), caused by the encounter of DNA compacted structure 

with the NP. (C) Correlation between amplitudes of current blockages and their dwell time 

K7.2 (blue) and Na7.2 (red). All DNA compacting events have very short dwell times, 

whereas deeper-current blockages can last several seconds in both type of cations (K+ and 

Na+). The number of events observed in Na7.2 is slightly higher than in K7.2. Similar 

results were obtained through the events frequency analysis for both (D) DNA compacting 

events and (E) translocation events. (F) Correlation between the %I/Io and the applied 

current 
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Figure 10. DNA translocation through nanopore at pH 10.  Data traces of (A) K10 and (B) 

Na10 were collected at 120mV applied current. Both samples exhibit two main types of 

events: Type 1 are the translocation events of DNA (%I/Io > 80%), and Type 2 are DNA 

compacting events (%I/Io < 30%). (C) Correlation between amplitudes of current 

blockages and their dwell time K10 (blue) and Na10 (red). All Type 2 events exhibite short 

dwell times, whereas deeper-current blockages can last several seconds. Similar results 

were obtained through the events frequency analysis for both (D) DNA compacting events 

and (E) translocation events. (F) Correlation between the %I/Io and the applied current. 

 

 

 

Hereafter, Type 2 events are also referred to as “DNA compacting events.” All 

samples were captured at a sampling rate of 50 μs, and at any given voltage (100, 120, or 

140mV), Type 2 events exhibit a significantly shorter dwell time (tb
c  ~ 100us) and smaller 

current-blockage amplitudes than Type 1 events, forming two distinct clusters of event on 

the amplitudes-dwell time scatterplots (Figure 9C and Figure 10C). Interestingly, as the 

voltage ramped from 100 to 140 mV, a decrease in %Ib/Io is observed for Type 1 events 

(Figure 9F and Figure 10F). For the control experiment, Type 1 events show a significant 

increase in event occurrence, while Type 2 events cannot be observed (Figure 11 and 

Figure 12). This result indicates that the control sample (18-bases ssDNA) cannot adopt 

the compacted structure. Events with %I/Io ~ 50% are suspected to be the stem-loop 

structures (hairpin) formed by nucleotides base-pairing (A-T and C-G) within the ssDNA. 
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Figure 11. Negative control experiment at pH 7.2. (A) Event data traces of Control K7.2, 

Control Na7.2, K7.2, and Na7.2. The control sample is an 18 bases ssDNA containing all 

four nucleotide base types (A, T, C, G). The absence of shallow blockage event (%I/Io < 

30) indicates the control sample’s inability to form compacted structures. (B) Scatter plot 

represents the correlation between event blockage amplitude and dwell time of the Ctrl-

K7.2 and Ctrl-Na7.2. The two event clusters indicate the presence of hairpin structure 

(%I/Io ~ 50%) and the translocation of a linear ssDNA (%I/I ~ 90%). All events were 

collected at 120 mV. 
 

 

 

 

 

 
Figure 12. Negative control experiment at pH 10. (A) Event data traces of Control-K10, 

Control-Na10, K10, and Na10. The control sample is an 18 bases ssDNA containing all 

four nucleotide base types (A, T, C, G). The absence of shallow blockage event (%I/Io < 

30) indicates the control sample’s inability to form compacted structures. (B) Scatter plot 

represents the correlation between event blockage amplitude and dwell time of the Ctrl-

K10 and Ctrl-Na10. The two event clusters indicate the presence of hairpin structure (%I/Io 

~ 50%) and the translocation of a linear ssDNA (%I/I ~ 90%). All events were collected at 

120 mV.  
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3.4.3 Comparing between translocation and DNA compacting events. We 

hypothesize that Type 2 events are produced by secondary structures, with dimensions 

larger than 2.6nm (cis opening of the nanopore), and are the result of the DNA compaction 

induced by monocations (K+ and Na+). Under electrophoretic force, these compacted DNA 

structures are drawn toward the cis opening of the pore, but cannot translocate through due 

to their large size, thus quickly bounce away. This process results in an abundant number 

of short-lived blockages, with (%Ib/Io ~ 30%), and 𝑡𝑏
𝑐 ~ 100𝜇s. At 120mV applied voltage, 

the ratios between the frequency of Type 1 events and Type 2 events are approximately 

1:36 (Na7.2), 1:29 (K7.2), 1:12 (Na10), and 1:14 (K10) (Tables 1 and 2). With increased 

application of applied voltages, frequencies of both Types 1 and 2 also significantly 

increased due to the high electrophoretic force. Most notably, as the voltage ramps from 

100mV to 140mV, frequencies of Type 1 and Type 2 events rise approximately 2-fold, and 

5- to 10-fold, respectively. Thus, single-channel analysis revealed that Type 2 events are 

far more plentiful than Type 1 events in all four samples (Na7.2, K7.2, Na10, and K10), 

implying that the abundancy of 15C-ssDNA was compacted by K+ or Na+ at pH 7.2 and 10 

(Figure 9D-E and Figure 10D-E). 

 

 

 

Table 2  

15mer DNA event summary (pH 7.2) 

Note: All values were recorded at 120mV+ applied voltage. 

 

 

 

 

 Type 1 events Type 2 events 

 I/Io (%) ∆t (ms) 𝒇(s-1) I/Io (%) ∆t (ms) 𝒇(s-1) 

Na7.2 85.4 ± 1.2 0.42 ± 0.02  0.38 ± 0.03 25.8 ± 6.7 0.1 ± 0.01 13.9 ± 8.48 

K7.2 84. ± 1.8  0.42 ± 0.04 0.22 ± 0.02 29.5 ± 5.5 0.1 ± 0.01 6.34 ± 0.35 
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Table 3 

15mer DNA event summary (pH 10) 
 

Note: All values were recorded at 120mV+ applied voltage. 

 

 

 

3.4.4 Comparing DNA potential of K+ and Na+. Single-channel recordings of 

the 15C-ssDNA reveal that, at both pH values of 7.2 and 10, most Type 1 events 

(translocation of linear ssDNA) cause a current blockage, %Ib/Io, of ~ 80-86%. At 120mV 

applied voltage, the ratios between Type 2 event frequencies, 𝑓𝑐(s-1), of Na7.2:K7.2 and 

Na10:K10 are 2.188:1 and 1.409:1, respectively (Table 2 and Table 3). Thus, the results 

indicate that between the two types of monovalent cations, Na+ has a higher compacting 

potential for ssDNA. 

Overall, the binding affinity and compacting potential of a monovalent cation to 

DNA strands are characterized by several factors, including but not limited to: (1) its 

hydrated radius, and (2) the chemical structure of the available nucleotides.180, 207 It has 

been shown that a smaller radius corresponds to stronger hydration, because the small size 

of the hydrated cation allows for effective interactions with DNA because of higher 

Coulomb electrostatic potential.180, 208 Subsequently, cations with a smaller hydrated radius 

can bind to DNA stronger than those with a larger hydrated radius.180 In contrast, as a result 

of partial dehydration of monocation in the compact state, higher binding affinity of cations 

correlates to lower DNA compacting potential.180 Thus K+ has higher binding affinity, but 

lower DNA compacting potential than Na+.180  

 Type 1 events Type 2 events 

 I/Io (%) ∆t (ms) 𝒇(s-1) I/Io (%) ∆t (ms) 𝒇(s-1) 

Na10 81.8 ± 0.6 0.55 ± 0.09  0.29 ± 0.01 24.7 ± 5.8 0.09 ± 0.01 3.4 ± 0.65 

K10 84.2 ± 1.7  0.37 ± 0.03 0.17 ± 0.01 23.7 ± 6.9 0.10 ± 0.01 2.4 ± 0.9 
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Moreover, previous studies have pointed out that due to the differences in their 

molecular structures, the affinity for cations of the five nucleobases (guanine, adenine, 

cytosine, thymine, and uracil) are also varied.209-212 Specifically, it was determined that the  

affinity Na+ has for nucleobases, measured in kcal.mol-1, is 42.1 for guanine, 40.9 

for cytosine, 31.3 for adenine, 33.0 for thymine, and 32.3 for uracil.210-211 With the aid of 

exocyclic amino groups, guanine and cytosine can be involved in cation binding through 

resonance effects; hence, have a much stronger cation binding than other nucleobases.211 

In our present work, the chosen ssDNA sequence contains only cytosine, which is one of 

the two nucleobases with the strongest binding affinity to Na+; thus, the effect of Na+ on 

inducing DNA compaction is significantly enhanced. Thus, the difference in our results in 

comparison to those of the previous group54 mainly arises from the characteristic affinity 

of cations for nucleobases. The differences in event data traces caused by compacted and 

non-compacted DNA can be seen in Figure 11 and Figure 12. 

In the previous study, because the sample DNA strand also contained adenine and 

thymine nucleotides,54 the effect of cation binding and thus, induced DNA compaction, 

became much weaker and could not be observed with 𝛼-hemolysin nanopore (no Type 2 

events). Thus, our findings in the current study fully agree with those from other 

laboratories,180, 207 proving that Na+ monovalent cations have a greater compacting 

potential on the 15C-ssDNA than K+ cation does. 

3.5 Conclusions 

In this chapter we have investigated the interaction of monovalent cations (K+ and 

Na+) with ssDNA using an 𝛼-hemolysin biological nanopore platform. Although many 

studies have been done on capturing secondary structures formed by cytosine- or guanine-
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rich sequences, the focus of those studies was usually using nanopore technology to capture 

the folding and unfolding of G-quadruplexes or i-motif structures. Thus, current-blockages 

caused by compacted DNA structures in a solution can be easily overlooked or neglected. 

Here, we presented our findings on the compacted structure of ssDNA induced by 

monovalent cations using biological nanopore. The study herein lay the groundwork for 

understanding and predicting the compacting process of ssDNA induced by monovalent 

cations (K+ and Na+) in nanopore-based studies. Moreover, in the recent years, many 

studies have been conducted to develop a nanocarrier for antisense oligonucleotides and 

single-stranded siRNAs in drug delivery, as well as in cancer gene therapy.213-216 We 

believe that the ability of monovalent cations to compact a short oligonucleotide, as 

discussed in this current study, has a promising potential in the development of drug 

delivery and gene therapy. 
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Chapter 4 

 

Investigation of Ckit1 G-Quadruplex Stability 

 

4.1 Abstract 

In this chapter, we investigated the formation of G-quadruplex on Ckit1 promoter 

sequence, which plays an important role in several human malignancies. Ckit1 is a guanine-

rich sequence that can form stable G-quadruplex structures in the presence of cations, 

causing gene downregulation and leading to suppression of cancer cell proliferation. Our 

study evaluated Ckit1 G-quadruplex structural stability dependence on cations and CX-

5461. Conventional methods often utilize fluorescence spectroscopy and circular 

dichroism to study CX-5461 efficiency on stabilizing G-quadruplex. However, these 

methods cannot provide real-time molecular dynamic sensing of a structure’s 

folding/unfolding behavior. This study utilized the nanocavity of a biological nanopore as 

the main tool for single-molecule analysis of Ckit1 G-quadruplex. Specifically, Ckit1 G-

quadruplex formation and stability with and without CX-5461 presence was analyzed using 

α-hemolysin nanopore, circular dichroism and thermal denaturation. Our results showed 

that Ckit1 G-quadruplex stability is cation-dependent (K+>Na+), resulting in longer 

current-blockage events and significantly decreased event capture rate with K+. Addition 

of CX-5461 drug enhanced Ckit1 G-quadruplex stability resulting in extended current-

blockage events (seconds- to minutes-long) in nanopore study and a significantly increased 

melting temperature. Using machine learning models, we were able to predict the binding 

state of CX-5461 to Ckit1 G-quadruplex in an Na+ environment, with a 92.4% sensitivity, 

70.3% specificity and 81.3% average accuracy, respectively. 
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4.2 Introduction 

G-quadruplexes are nucleic acid higher-order structures, made of one, two or four 

guanine-rich DNA or RNA strands. G-quadruplex consists of stacked G-quartets, which 

are cyclic arrangements of four guanines held together through Hoogsteen hydrogen bonds 

and stabilized by a central cation (e.g. K+). G-quadruplex structures are frequently found in 

the telomeres and gene promoter regions. To date, over 300,000 putative G-quadruplex-

forming sequences have been found in the human genome.217 These structures play a 

functional role in regulating gene expression, controlling chromatin structure, and 

destructing chromosomal stability.218-221 With more than 40% of human protein encoding 

genes containing one or more putative G-quadruplex forming motifs in the promoter 

regions, stabilizing G-quadruplex structures is a promising strategy to control gene 

expression at transcriptional and translational levels.222 

CKIT is a proto-oncogene encoding the Ckit transmembrane tyrosine kinase 

receptor, which participates in the expression of genes, regulates cell differentiation, 

proliferation, migration, and resists cell apoptosis.223-225 Overexpression and mutations of 

the Ckit gene have been found in a number of cancers, including pancreatic, leukemia and 

melanoma.226-228 Promoter region of the Ckit gene contains three guanine-rich regions that 

can fold into stable G-quadruplex structures, known as Ckit1, Ckit2, and kit*. 

For the Ckit proto-oncogene specifically, the presence of G-quadruplex structures 

can prevent cancer cells from replicating. Stabilization of Ckit gene G-quadruplex has been 

linked with inhibition Ckit tyrosine kinase receptor transcription and expression. This leads 

to  cell proliferation and cause DNA damage that would kill cells without nucleic acid 

repair pathways, such as homologous recombination pathways.229 Thus, down-regulation 
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of Ckit expression through stabilizing kit1 G-quadruplex is an attractive strategy for cancer 

therapy.230-232 Certain molecules, such as CX-5461 (Figure 13), can bind and stabilize 

Ckit1 G-quadruplex structures; thus, effectively blocking the replication of cancerous 

cells.233 Upon binding to Ckit1 G-quadruplexes, CX-5461 reduces the binding affinity of 

SL1 pre-initiation complex and RNA Pol I complex to rDNA promoters, leading to 

apoptosis.234 This molecule was proven to be most efficient in tumorous cells that lack 

DNA repair mechanisms such as the BRCA1 and BRCA2 tumor suppressor genes.235 

In this study, we report the changes in formability and stability of Ckit1 G-

quadruplex in the presence of K+ and Na+ cation. Through electrical current signatures, we 

showed that binding of the CX-5461 molecule has a stronger stabilizing efficiency and 

further alters the volume of Ckit1 G-quadruplex in an Na+ environment as compared to a 

K+ environment. Ultimately, we employed a simple machine learning algorithm to predict 

the CX-5461 bound/unbound G-quadruplex. 

4.3 Methods 

4.3.1 Chemicals and reagents. Chemicals and reagents used in the experiments 

were purchased from the following vendors: 1,2-diphytanoyl-sn-glycero-3-

phosphocholine (Avanti Polar Lipids); pentane (Sigma-Aldrich); potassium chloride 

(Sigma-Aldrich); sodium chloride (Sigma – Aldrich); Tris base (Promega); 

Ethylenediamine Tetraacetic acid (EDTA); pentane (Fischer Chemical); and hexadecane 

CH3(Ch2)14CH3 (Avantor). CX-5461 (Sigma Aldrich) was purchased in powder form, 

and suspended in acetic acid (VWR).  CX-5461 solution was then aliquoted and stored at 

-20˚C. 
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4.3.2 DNA samples. Synthetic single-stranded DNA oligos were designed and 

purchased from Integrated DNA Technology (IDT – Coralville, IA). DNA oligos utilized 

in this study had the following sequences: 

Control (linear): 5’ – AGG GAT TTC GCT TTT AGG AGG G-3’ 

Ckit1: 5’ – AGG GAG GGC GCT GGG AGG AGG G-3’ 

Ckit1 2 tails: 5’– dT10 - AGG GAG GGC GCT GGG AGG AGG G - dT10 – 3’ 

Upon delivery, all DNAs were suspended in a standard DNA storage buffer 

containing 10mM Tris, 1mM EDTA and titrated to 8.0pH. All samples were aliquoted into 

small volumes and stored at -80˚C until usage, in order to prevent multiple thaw-freeze 

cycles that can degrade and affect DNA quality. For both nanopore and CD experiments, 

DNA final concentration of 1µM was used. 

4.3.3 Experimental setup. We employed an electrophysiology setup and followed 

a protocol described in previous studies.53, 236 Each experimental chamber was filled with 

electrolyte solutions containing 1M KCl or 1M NaCl,  buffered with 10mM Tris and 1mM 

EDTA titrated to 7.2pH. α-hemolysin protein was inserted into the bilayer from cis side 

forming a single-channel penetrated across the lipid bilayer. DNAs were inserted to the cis 

side. For experiments with CX-5461, electrolyte solutions were titrated to 8.3pH, in order 

to compensate for the acidity of CX-5461 solution. 

4.3.4 Single channel recording. Single-channel recordings were performed using 

Axopatch 200B (Molecular Device Inc.), filtered with a built-in 4-pole low-pass Bessel 

Filter at 5kHz. Data were acquired with Clampex 10.7 (Molecular Device Inc.) and Axon 

Digidata 1550B A/D converter (Molecular Device Inc.), at a sampling rate of 20 kHz. The 
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data were analyzed using Clampfit 10.7 (Molecular Device Inc.), Excel (Microsoft) and R 

software. 

4.3.5 Data analysis and visualization. Events with %I/Io < 50% were considered 

as brief interaction of DNA and the pore entrance, rather than DNA translocation; thus, 

disregarded from data analysis.237 For every experimental condition, approximately 2000 

DNA translocation events were included for the analysis. Event blockage amplitudes were 

determined from amplitude histograms by fitting the peaks to Gaussian function. The 

duration and occurrence of current-blockage event for DNA translocation were obtained 

by fitting the dwell-time histogram to an exponential distribution. Data were given as the 

mean ± SD, based on at least three separate pores. Plots were  generate using Excel 

(Microsoft) and ggplot2 package (R).  

4.3.6 Circular dichroism and thermal denaturation. Jasco CD 

spectropolarimeter, model J-810, were utilized for both normal absorbance and thermal 

denaturation studies. For all CD measurements, 1µM DNA concentration, CX-5461: DNA 

ratio of 5:1 (when applicable) were used, in consistency with nanopore studies. Spectra 

were capture in the 220-300 nm wavelength, 1.0 nm bandwidth, 50nm/min scanning speed, 

and a standard sensitivity. All experimental solutions contained 1M KCl or NaCl (for 

normal CD) and 0.1M KCl or NaCl (for thermal denaturation studies). The thermal 

denaturation was performed utilizing the same J-810 that was used for the CD portion of 

this study.  In addition, a Jasco PTC-423S temperature attachment was used to increase the 

temperature from 20C to 95C at a rate of 1C/min.  CD was recorded at temperatures below 

100C to prevent the sample from boiling over and affecting the data. All CV results were 

exported as .csv files for further analysis and plotting with Excel. 
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4.4 Results and Discussion 

4.4.1 Formation of Ckit1 G-quadruplex in K+ and Na+. In our experiment, we 

first employed circular dichroism (CD) to confirm the ability of Ckit1 single-stranded DNA 

(ssDNA) to adopt G-quadruplex structure. In CD, as circularly polarized light pass by, 

optically active chiral molecules (e.g. DNA and protein structures) will absorb the light 

differently, allowing them to be measured and quantified. In our study, CD spectra of Ckit1 

DNA in Na+ or K+ solutions both exhibited strong negative and positive peaks at 237 and 

263 nm, respectively (Figure 13D), confirming the formation of G-quadruplexes with 

parallel topology. Unlike telomeric sequence, whose G-quadruplex folding topologies 

depend on different cations,105 the folding topology of Ckit1 G-quadruplex does not depend 

on cation nature (Na+ vs. K+).  

 

 

 

 

Figure 13. (A) Schematic cross-sectional structures and dimensions of an α-hemolysin 

nanopore embedded in lipid bilayers. (B) Spontaneous folding of a linear single-stranded 

Ckit1 DNA into G-quadruplex structure in the presence of K+. The Ckit1 G-quadruplex 

composes of three G-quartets (each yellow layer) stacking on top of each other, and 

stabilized by K+ cations. (C) Chemical structure of CX-5461 cancer drug, which has been 

shown to promote the formation and stabilize Ckit1 G-quadruplex structure. (D) CD 

spectra of Ckit1 DNA in the presence of K+ or Na+ consisted a positive peak at 263nm and 

a negative peak at 235nm. This result confirmed the presence a G-quarduplex structure 

with parallel folding topology 



www.manaraa.com

 

58 

 

The transports events of Ctrl ssDNA and Ckit1 ssDNA through nanopores were recorded 

in 1M KCl and 1M NaCl, with and without the presence of CX-5641 molecules (Figure 

14). Ctrl DNA has the same length with Ckit1 DNA with substitution of two opposite 

guanines of every G-tetrad with thymine (Figure 15). This substitution disrupts the 

formation of G-quartet, preventing the Ctrl sequence from folding into the G-quadruplex. 

Instead, Ctrl simply translocates through the α-hemolysin nanopore with a translocation 

time (∆t) of 2.68 ± 0.14 ms and capture rate (𝑓) of 12.24 ± 0.13 s-1. These values are in a 

similar range with those previously reported for linear, single-stranded DNA translocation 

through the nanopore.238 

Compared to Ctrl, Ckit1 DNA yielded current blockage events with significantly 

longer ∆t and reduced 𝑓 (Table 1). Specifically, experiments on Ckit1 DNA yielded two 

major event types, named Type 1 and Type 2. Type 1 consists of independent short-lived 

blocks, whose open pore current blockage (%I/Io) was approximately 69.66 ± 1.81%. 

These spike-like events had similar amplitude and durations with those resulted by the 

linear single-stranded Ctrl DNA translocation through the nanopore. Whereas Type 2 

events featured a deep current-blockage lasting milliseconds before returning to open-

channel current level. The absence of Type 2 events in experiments with Ctrl DNA 

confirmed that these long-lasting events result from the translocation of Ckit1 G-

quadruplex. Strong DNA secondary structure, such as G-quadruplex, require high energy 

to break up the stacked G-quadruplex structure, before it can enter the nanopore 

constriction site, causing a large temporal dispersion and prolonged translocation time.53, 

105, 239 
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Figure 14. Data traces from a single α-hemolysin nanopore showing current-blockage 

events of: (A) Control DNA (Ctrl) in Na+, and Ckit1 DNA in (B) K+, (C) K+/ CX-5461, 

(D) Na+ and (E) Na+/CX-5461. The control DNA is incapable of folding into secondary 

structure, causing spike-like events (top panel); whereas Ckit1 DNA spontaneously adopt 

the G-quadruplex structure in the presence of K+ or Na+, leading to long lasting current 

blockages. In all experiments, the concentration of both DNAs was 1 µM. All traces were 

recorded at +160mV in a 1M salt solution buffered with 10mM Tris, 1mM EDTA and 

calibrated to pH 7.2. 
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Figure 15. Stability of G-quadruplexes as determined by thermal denaturation analysis in 

(A) 0.1M KCl and (B) 0.1M NaCl with and without the presence of CX-5461 molecules. 

The secondary structure melting temperature, Tm, is a temperature, where 50% of the DNA 

are folded. (C) Violin plots represent the distribution of current-blockage event dwell time, 

∆t. Plots were arranged in the order of increasing mean ∆t ( Na+ < K+ < Na+ with CX-5461 

< K+ with CX5661). 

 

 

 

As Ckit1 DNA was instantaneously folded into G-quadruplex structure in  the 

presence of monovalent cations (Na+/ K+), the remaining unfolded Ckit1 linear structure 

(Type 1 event) was significantly less than that of Ctrl DNA. Specifically, the occurrence 

rate, 𝑓, of Ckit1 Type 1 in K+ was approximately 5.5 s-1, almost 2.25 times lower than the 

12.24 s-1 for the Ctrl Type 1 event in the same solution. In order to determine the cation 

and stabilizing molecule dependency, we calculated the equilibrium formation constant for 

G-quadruplex in all experimental conditions. As shown in previous studies, equilibrium 

formation constant for G-quadruplex, 𝐾𝑓, is the concentration ratio between folded DNA 

and linear DNA in the mixture.  
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From the correlation between DNA concentration and event capture rate, 𝐾𝑓 can 

also be calculated using the equation: 𝐾𝑓 =
𝑓𝑐𝑡𝑟𝑙

𝑓𝑐𝑘𝑖𝑡1,𝐿 − 1 
.53 In which, 𝑓𝑐𝑡𝑟𝑙 is the capture rate 

of the linear, single-stranded Ctrl DNA and 𝑓𝑐𝑘𝑖𝑡1,𝐿 is the capture rate of linear Ckit1 DNA. 

The calculated 𝐾𝑓 for Ckit1 G-quadruplex was 3.83  in K+, 1.84 in Na+, 4.65 in K+/CX-

5461, and 4.23 in Na+/CX-5461.The equilibrium formation constants suggest the sequence 

of most favored experimental conditions for Ckit1 G-quadruplex formation is: K+/CX-

5461 > Na+/CX-5461 > K+ > Na+ (as shown in Table 4).  

 

 

 

Table 4 

Ckit1 current blockage event summary 

  

 
 
 

 

4.4.2 Stability of Ckit1 G-quadruplex. A thermal denaturation experiment was 

performed to determine the stability of the G-quadruplex structures by comparing its 

melting temperature in Na+ and K+ solutions, as well as investigating stabilization effect of 

CX-5461. With the experimental solution being water-based, thermal denaturation studies 
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must be halted under 100˚C, in order to prevent evaporation of sample. As Tm of Ckit1 G-

quadruplex is approximately 88˚C in 1M NaCl, we decreased the solution ionic strength 

(while keeping DNA concentration at 1µM), which allowed us to record the melting 

temperature of the structures at a range sufficiently far away from the evaporation point as 

to not affect the data (Figure 16).  We decided that 0.1M would be the ideal concentration 

for further testing. The final thermal denaturation study was performed in 10mM Tris-HCl 

buffer (pH 7.2) containing 100mM cation (Na+ or K+). When applicable, CX-5461 

concentration was 5 µM, which corresponds to a 5:1 ratio of ligand to DNA. Reduction of 

ionic strength  resulted in a lowering of Tm of unbound Ckit1 G-quadruplex to 70˚C and 

49˚C in 0.1M KCl and 0.1M NaCl solutions, respectively (Figure 15A – B). Addition of 

CX-5461 increases Tm of Ckit1 G-quadruplex structure, resulting in a ∆Tm of 13˚C and 

11˚C in K+ and Na+ (Figure 15A – B). Higher melting temperature in K+ than in Na+ proves 

that the structure is more stable in K+.  

In order to visualize the distribution of G-quadruplex translocation time through the 

pore, we constructed a violin plot for dwell time of events in each condition (Figure 15C). 

It is important to note that only events lasting longer than 1ms were included in the violin 

plots, as those with shorter dwell time were considered as translocation of unfolded linear 

ssDNA (Type 1 events).  The constructed violin plots for the dwell time, ∆t, of Ckit1 type 

2 events exhibited a bimodal distribution with two populations of events lasting from 

milliseconds to several seconds (Figure 14C). Using paired-wise testing, we found a 

statistically significant difference (95% confidence interval) in dwell time when Type 2 

events in Na+ compared to in K+ and Na+/CX-5461. Despite an overall increase in event 
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dwell time in the presence of CX-5461, there was no statistical difference between event 

dwell time in K+ and K+/CX-5461.  

Previous studies showed that the unfolding rate constant (ku) of G-quadruplex is 

an indicator of structural stability and can be estimated using ∆t, through the equation: 

𝑘𝑢 =
1

Δ𝑡
.53 Moreover, the kinetic folding rate constant, 𝑘𝑓, is the product of the equilibrium 

formation constant and unfolding rate constant, or: 𝑘𝑓 = 𝐾𝑓𝑘𝑢.53 Using these equations, 

we calculated the folding and unfolding rates for Ckit1 G-quadruplex, as shown in Table 

4. In the absence of CX-5461, Ckit1 G-quadruplex folded much more rapidly in a K+ 

environment than in an Na+ environment (with a 𝑘𝑓 of 1.13 and 0.59, respectively), while 

unfolding more slowly. On the other hand, in the presence of CX-5461,  ku and kf of Ckit1 

G-quadruplex were similar between Na+ and K+ environments. (see Table 4).  

There are multiple factors that contribute to the stabilization of G-quadruplexes and 

their topology, including stacking interactions, hydrogen bonding, solvation, and cation 

bonding.240-241 To stabilize the G-tetrad stacks, the binding cation needs a sufficient ionic 

strength, in order to compensate electrostatic repulsion between the phosphate oxygens of 

four Guanines, instead of two in regular DNA duplexes.241 In general, K+ induced G-

quadruplex is much more stable and has longer lifetime than Na+ induced G-quadruplex, 

owing to the higher ionic strength and lower hydration energy of K+ ions.241-244 

Furthermore, the smaller Na+ cations can be coordinated within the plane of tetrads, 

and occupy a range of positions with lower steric constraints; thus, reducing the 

electrostatic repulsions.241 While Na+ can alternatively occupy coordination sites and 

become closer to the core of the tetrads, Na+ G-quadruplex confers a higher plasticity that 

allows a better fit with a binding molecule.241 On the other hand, K+ is coordinated at the 



www.manaraa.com

 

64 

 

cavity between two G-tetrads and bridges together eight  Guanines O6 atoms, thereby  

becoming more stable and rigid.241 

Previous studies involving thrombin binding aptamer (TBA) found that ∆Tm 

between K+ and Na+ coordinating TBA decreases from 29˚C (free) to 12˚C (bound).241 This 

can partially explain what we observed in our study: compared to Na+, K+ cation creates a 

much more stable G-quadruplex structure. Presence of CX-5461 in K+ solution produced 

extremely stable structures that could not be included in data analysis, as the event lasted 

several hundred seconds to minutes. Therefore, the enhanced stability induced by CX-5461 

was better observed in Na+ experimental buffers. This was reflected by significant increase 

in event dwell time in Na+ (with CX-5461 versus without), but not in K+ buffer. 

 

 

 

 

Figure 16. Thermal denaturation of Ckit G-quadruplex in buffers containing: 1M, 0.2M or 

0.1M NaCl. Melting temperature, ∆Tm, is determined when there are 50% structure 

unfolded. ∆Tm of Ckit1 G-quadruplex reduces approximately 30˚C as salt concentration 

decrease 10-fold. DNA concentration was held constant at 1µM for every experiment. 
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4.4.3 Changes in volume of Ckit1 G-quadruplex. As single-channel data traces 

of Type 2 (i.e. G-quadruplex translocation) exhibited multiple events with well-defined 

step-wise structure that varied in length (Figure 17A–D), we decided to examine  the 

hidden subgroups in Type 2 events of Ckit1 DNA. For this, we utilized an unsupervised 

machine learning technique, which can identify similarities and patterns in datasets, to 

cluster Type 2 events using their amplitude (%I/Io) and dwell time (∆t). Clustering is one 

of the most common data analysis techniques used to explore the structure of the data. 

Specifically, we used the kmeans function in R to classify the Type 2 translocation events 

in each experimental condition. K-means is a randomly-initialized iterative clustering 

method that partitions the dataset into k predefined distinct subgroups and the positions of 

each group’s centroid.  

Traditionally, dwell time is typically used as the main indicator to classify distinct 

translocation events. However, the amplitude of current-blockage events is known to 

reflect the size and interaction of the targeted molecule with the nanopore. Thus, we 

selected both %I/Io and ∆t as features for unsupervised machine learning. The two selected 

features (%I/Io and ∆t) have greatly different measurement scales of 0 – 100% and 1 – 

1000s ms, respectively. To avoid bias introduced by one group being dominant in size, we 

first converted each feature to a 0 to 1 scale. After clustering and calculation of centroids, 

data were converted back to their original values for better visualization and comparison 

between conditions. To determine the optimal parameter k for all data subset, we 

constructed an elbow plot, which suggested that the optimal number of clusters in nanopore 

Type 2 events was k = 2 (Figure 18). Figure 17E–H represents the scatter plots of the ionic 

traces with respect to %I/Io and ∆t.  
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Figure 17. Clustering analysis for all samples. Examples of Ckit1 G-quadruplex data traces 

in buffers containing: (A) 1M KCl, (B) 1M KCl with CX-5461, (C) 1M NaCl or (D) 1M 

NaCl with CX-5461. Current-blockage events exhibit step-wise changes in amplitude, 

representing different stages of G-quadruplex threading and translocating through the α-

hemolysin pore. (E-H) Clustering analysis of all current-blockage events in all 

experimental conditions using k-mean method. In each solution, there are two main clusters 

of events with shallow (red) or deep current blockage amplitudes (blue), reflecting the step-

wise current blockage amplitude changes. At least 1000 events were included in each 

scatterplot. Events with ∆t ≤ 1ms were excluded in this scatter plotting since those events 

were linear DNA translocation. 
 

 
 

 

 

Figure 18. Elbow plot for determining optimal number of clusters for amplitude-dwell 

time scatterplot. 
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In each plot, there are two event clusters (showed in red and blue), named Type 2a 

and 2b, respectively. Although the event translocation time is largely dispersed (as 

discussed previously), event amplitude seemed to be the main deciding factor in Type 2 

subgroups classification, as shown in Figure 17E–H. These level changes (Type 2a and 2b) 

reflected the two stages of G-quadruplex translocation through the nanopore, which were: 

(a) capturing and (b) unfolding of the DNA secondary structure (Figure 19B). The average 

amplitude of Type 2a and 2b events were 67.4±3.9% and 85.1±2.9%, respectively.  

 

 

 

 

Figure 19. Ckit1 G-quadruplexes volume. (A) Comparing changes in Ckit1 current-

blockage amplitudes of level 1 and 2 in buffer solutions contains K+ or Na+ (with and 

without CX-5461). The presence of CX-5461 exhibits minimal effect on Level 1 and level 

2 %I/Io in K+, but significantly increases %I/Io of both levels in Na+ solutions. (B) 

Schematic explaining different stages of Ckit1 G-quadruplex translocation through α-

hemolysin nanopore, corresponding to current-blockage level 1 and 2. 
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Previous studies involving TBA G-quadruplex and beta-Cyclodextrin (𝛽-CD) 

showed that the amplitude of current-blockage events reflected the change in volume of 

the G-quadruplexes formed by different cations.53, 245 Thus, the current-blockage 

amplitude, %I/Io, of event Type 2a and 2b reflect an overall trend that volume of K+ G-

quadruplex is smaller than Na+ G-quadruplex (Figure 19A). This has been explained in 

previous studies on G-quadruplexes. Briefly, as the Na+ ion is smaller (d = 0.95 Å), it can 

fit in the plane of a quartet; while the larger K+ ion (1.33Å) is coordinated in the center of 

the cavity between two planes. Position of cations within the G-quadruplex, in turn, 

changes the cation-carbonyl distance (d), explaining the reason why volume of K+ G-

quadruplex is smaller than Na+ G-quadruplex, as observed in previous  studies and our 

results herein.53 Specifically, dK-O is shorter than dNa-O, giving rise to stronger attraction 

between cation and the carbonyl, and a more stable G-quadruplex in K+ presence. 

Interestingly, the binding of CX-5461 changed the volume of Ckit1 G-quadruplex 

differently. As shown in Figure 17E–H and Figure 19A, while the volume of K+ G-

quadruplex remains mostly unchanged, volume of Na+ G-quadruplex significantly 

increased when bound by CX-5461, reflecting through a 10 and 5 pA increase in the 

amplitude of event Type2a and 2b, respectively.  

4.4.4 Prediction of CX-5461 binding status. Having determined the changes in 

formability and stability of Ckit1 G-quadruplex in correlation with cations and stabilizing 

molecules, we sought to demonstrate the application of α-hemolysin nanopore as a 

molecular screener for G-quadruplexes. To do this, we used a supervised machine-learning 

to train classifiers for pattern recognition and discriminate Ckit1 G-quadruplex formed in 

the different experimental conditions discussed thus far. In each experimental condition, 
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we randomly selected 2000 current-blockage events, then divided the datasets into 80% 

and 20% for model training and validation, respectively. Two features, ∆t and average 

%I/Io, collected from the current blockages were used as inputs to a k-nearest neighbor 

(KNN) classifier. We first trained the model using all event captured by the nanopore. This 

first run yielded an average accuracy and sensitivity of 69.6 ± 2%  and 72.2 ± 5%, 

respectively. The model’s prediction ability was quite low, due to the fact that Ckit1 DNA 

could instantaneously fold and unfold into G-quadruplex structure. Thus, the events 

captured by nanopore comprised of both linear and folded DNA (Type 1 and 2 events), as 

previously discussed. Thus, we retrained the model using only events lasted longer than 

1ms, in order to exclude Type 1 events (linear DNA). With the filtered datasets, the model 

performance was enhanced significantly, yielding a new average accuracy and detection 

sensitivity of 81.3 ± 4 % and 92.4 ± 2 %. Table 5 shows the classification accuracy, 

sensitivity, and specificity the model for different experimental condition pairs.  

 

 

 

Table 5 

KNN classification results for G-quadruplexes formed in different conditions 

 

 
 

 

 

 

Distinguish Ckit1 G-

quadruplex formed in 

Sensitivity 

(%) 

Specificity 

(%) 

Balanced 

Accuracy (%) 

Condition 1 Condition 2 

K+ Na+ 93.55 77.78 85.66 

CX-5461/K+ KCl 89.66 58.33 73.99 

CX-5461/Na+ Na+ 95.45 70.00 82.73 

CX-5461/Na+ CX-5461/K+ 90.91 75.00 82.95 

*Note: Samples in Group 1 were considered as the positive result for classification. 
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Results showed that the model’s ability to distinguish one type of G-quadruplex 

from another is in the order of: (Na+/CX – Na+) > (K+ – Na+) > (Na+/CX – K+/CX > K+/CX 

– K+. As we discussed earlier, the most pronounced changes in the structure’s volume and 

stability occurred when CX-5461 binds to Na+ G-quadruplex; whereas no statistically 

significant changes were found in for Ckit1 G-quadruplex in K+ solution with and without 

CX-5461. Thus, the order of the model’s performance could be explained. A limitation in 

our prediction model comes from having nonhomogeneous control samples. When 

working with dynamic experimental conditions, such as those investigated here, the 

process of ssDNA folding/unfolding and of CX-5461 binding/unbinding to the G-

quadruplex structure constantly occurs. This lowers the model performance, as the training 

dataset are nonhomogeneous.  

4.5 Conclusions 

In summary, we have presented the ability of α-hemolysin nanopore as a real-time 

molecular dynamic sensing for Ckit1 G-quadruplex formation and stability in K+ and Na+ 

environments. While G-quadruplex structures can be extremely stable, their  topology and 

stability depend on many factors, including the length and sequence composition of the 

total G-quadruplex motif, the size of the loops between the guanines, strand stoichiometry 

and alignment, and the nature of the binding cations.240 Our study showed that Ckit1 G-

quadruplex has a parallel folding topology in both environments, with a more tightly 

packed structure in the presence of K+ cations. Binding of CX-5461 molecules significantly 

enhanced the stability and increased the volume of Ckit1 G-quadruplex in Na+, but not in 

K+. In the absence of CX-5461, Na+ G-quadruplex and K+ G-quadruplex featured greatly 

different equilibrium properties. Specifically, Na+ G-quadruplex folds much slower and 
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unfolds rapidly, compared to K+ G-quadruplex. On the other hand, presence of CX-5461 

significantly enhanced the folding rate of linear Ckit1 DNA and slows down the unfolding 

rate of G-quadruplex, leading to a similar equilibrium folding kinetic constant in both K+ 

and Na+.  

Apart from determining the structural formation and stability, we further employed 

clustering analysis to determine the hidden pattern of the nanopore current blockage 

amplitudes, which have distinct levels reflecting the two stages of (i) capturing and (ii) G-

quadruplex translocation through the pore. The volume of G-quadruplex is correlated with 

the cation species and presence of CX-5461. These changes in the structure volume and 

stability made it feasible to employ machine learning algorithms to classify G-

quadruplexes formed in different experimental conditions. With the ability to 

computationally predict the binding stage of cation and CX-5641 molecule to G-

quadruplex, we believe α-hemolysin nanopore could be an interesting tool for real-time 

monitoring the binding reference of G-quadruplex to cations and stabilizing molecule in 

mixture solutions. 
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Chapter 5 

 

Mutations on Ckit1 G-Quadruplex Reduce CX-5461 Efficacy 

 

5.1 Abstract 

In this article, we employed α-hemolysin biological nanopore to the effect of point 

mutation on Ckit1 G-quadruplex stability and drug efficacy.  Our study employed six DNA 

samples including Ckit1 and its mutated sequences (containing 1-6 mutations). The 

signature blocks in the nanopore revealed that number and position of mutation have an 

impact causing destabilization of the G-quadruplex structure. Specifically, sequences with 

the same number of mutations on the same G-quartet layer exhibited similar stability. 

Furthermore, CX-5461 significantly increases G-quadruplex structural stability only in 

sequences with no mutation on the top G-quartet. Moreover, using a random forest 

classifier on nanopore data, we were able to distinguish mutated from unmutated Ckit1 

sequences with an overall sensitivity and specificity of 81.9% and 83.4%, respectively. 

Understanding the effects of mutation on G-quadruplex stability is beneficial for 

constructing methods to predict treatment response in personalized medicine approaches.  

5.2 Introduction 

In this study, we investigated the efficacy of CX-5461 on mutated C-kit1 promoter 

sequences to elucidate the importance of each component G-tetrad in the overall stability 

of the G-quadruplex structure. Activating mutations on C-kit1 have been observed in 

several types of malignancies, notably leukemia, melanoma, and gastrointestinal 

tumors.246-248 Our study employed a biological nanopore sensor and circular dichroism 

spectroscopy to compare the stability of Ckit1 G-quadruplex and its mutated sequences in 

the presence of sodium cations (Na+). Our earlier work revealed that while the overall 
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structural stability is lower in Na+ than K+ environment, the effect of CX-5461 on 

stabilizing the Ckit1 G-quadruplex was more pronounced in Na+ (see Chapter 4). We found 

that CX-5461 affects the stability of the mutated Ckit1 G-quadruplex to varying degrees, 

depending on the mutation position and number. Having more than one mutation on the 

top G-quartet might inhibit binding of CX-5461 to the structure, leading to no significant 

change in G-quadruplex stability. In addition, using nanopore data and machine learning 

algorithms, we were able to distinguish mutated sequences from unmutated Ckit1 with 

81.9% sensitivity and 83.4% specificity.  

5.3 Methods 

5.3.1 Chemicals and reagents. The chemicals and reagents used in this study along 

with the associated vendors are as follows: Sodium chloride (Sigma-Aldrich); 1,2-

diphytanoyl-sn-glycero-3-phosphocholine (Avanti Polar Lipids); pentane (Sigma-

Aldrich); Tris base (Promega); Ethylenediaminetetraacetic acid (EDTA) (Sigma-Aldrich); 

pentane (Fischer Chemical); hexadecane CH3(Ch2)14CH3 (Avantor); CX-5461 

lyophilized powder (Sigma-Aldrich); and acetic acid (VWR). The CX-5461 was then 

aliquoted into 1.5 mL microcentrifuge tubes which were wrapped in aluminum foil and 

stored in a freezer at -20˚C. 

5.3.2 DNA samples. All DNA used in this study were designed and purchased from 

Integrated DNA Technology (IDT - Coralville, IA) and had the following sequences: 

Ckit1:  AGG GAG GGC GCT GGG AGG AGG G (0 mutation) 

L1M1: AGG GAT GGC GCT GGG AGG AGG G (1 mutation) 

L1M2: AGG GAT GGC GCT TGG AGG AGG G (2 mutations) 

L2M1: AGG GAG TGC GCT GGG AGG AGG G (1 mutation) 
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L2M2: AGG GAG TGC GCT GTG AGG AGG G (2 mutations) 

M2C: AGG GAT TTC GCT TTT AGG AGG G (6 mutations) 

Upon delivery, DNA samples were resuspended in a standard storage buffer 

(containing 10mM Tris, 1mM EDTA and titrated to 8.0 pH).  All samples were then 

aliquoted and stored at -80˚C until experimentation. This was done to prevent the 

degradation of the DNA quality caused by multiple thaw-freeze cycles. In both the 

nanopore and circular dichroism experiments, the final concentration of the DNA was 1 

µM. 

5.3.3 Experimental setup. Detailed protocol and description of the α-hemolysin 

nanopore experimental setup has been discussed in previous studies.47, 50 A 1 µM aliquot 

of DNA sample was inserted into the cis chamber. The cis chamber was grounded, so that 

when applying a positive voltage, the negatively charged DNA would be driven through 

the nanopore to the trans side. Electrolyte solutions in the cis chamber were titrated to pH 

8.15 in experiments using CX-5461, in order to compensate for the acidity of CX-5461 

solution. 

5.3.4 Data analysis and visualization. Event blockage amplitudes were 

determined from amplitude histograms by fitting the peaks to Gaussian functions (single-

sample and mixture models). The duration and occurrence of short-lived blockages for 

DNA translocation were obtained by fitting the dwell-time histogram to an exponential 

distribution. Only current-blockage events with %I/Io ≥ 60 % and ∆t > 1ms were selected 

for data analysis.73 Those with %I/Io < 60% or ∆t < 1ms are considered as brief interaction 

or translocation of linear ssDNA, respectively. Data were given as the mean ± SD, based 
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on at least three separate experiments. RStudio was used to run ANOVA and Tukey’s HSD 

tests to determine the significance of dwell-time data.  

5.3.5 Circular dichroism and thermal denaturation. In the studies for both 

absorbance and thermal denaturation, a model J-810 Jasco CD spectropolarimeter was 

utilized. When measuring CD, a CX-5461:DNA (1 µM DNA concentration) ratio of 5:1, 

when applicable, was used, which is consistent with pre-existing nanopore studies. Spectra 

were captured within a 220-300 nm wavelength range, 1.0 nm bandwidth, 50nm/min 

scanning speed, and a standard sensitivity. 1M NaCl experimental solutions were used in 

normal CD studies and 0.1M NaCl experimental solutions were used in thermal 

denaturation studies. J-810 is utilized in both normal CD and thermal denaturation portions 

of this study. In order to increase the temperature from 20˚C to 95˚C, a Jasco PTC-423S 

temperature attachment with a heating rate of 1˚C/min was utilized. To prevent the sample 

from boiling and affecting the data, CD was recorded only at temperatures below 100˚C. 

The results of the CD were exported as .csv files to be analyzed further and plotted in Excel. 

5.4 Results and Discussion 

5.4.1 Experimental design. This study aims to explore the effects of point 

mutations on Ckit1 G-quadruplex formation and stability, as well as the effects of cancer 

drug CX-5461 on mutated C-kit1 G-quadruplexes versus native C-kit1 G-quadruplexes. In 

this study, we employed variations of the Ckit1 DNA, each containing different mutations 

of guanine. Specifically, six DNA samples included: Ckit1 (positive control), L1M1, 

L1M2, L2M1, L2M2, and M2C (negative control). Ckit1 is the unmutated sequence, while 

M2C contains six mutated guanine bases in total, with two at each G-quartet layer. The 

L/M scheme in sample naming convention was in reference to the position of G-quartet 
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layer (“L”) and number of mutation (“M”), respectively. For example, “L1M2” refers to 

C-kit1 DNA that has two-point mutations on the part of the sequence that would form the 

first layer of the G-quadruplex. In Figure 20, the first column shows schematics of the 

Ckit1 G-quadruplex, with the three layers of G-quartets (yellow layers), its central Na+ 

cations (red dots), and location of the mutated guanine (purple circles). As the G-

quadruplex is symmetrical, we only ran experiments with mutations on the first and second 

G-quartet, assuming CX-5461 effects on G-quadruplex stability if bound to the first or third 

layer would be similar. In order to increase efficiency of the experimental design, we ran 

experiments with C-kit1 DNA with up to two mutations. The G-quadruplex requires four 

guanine bases in order to form. Therefore, two mutations on the C-kit1 G-quadruplex 

sequence would have a sufficient effect on destabilizing of the G-quartet.  

5.4.2 Changes in current-blockage events among conditions. First, we compare 

raw data traces obtained from nanopore experiments of all samples in the same 

experimental conditions (1M NaCl, +160mV, with and without presence of CX-5461). As 

showed in Figure 20, all samples exhibited two types of events, which are spike-like (Type 

1 events) and long-lasting blockages (Type 2 events). In Ckit1 DNA, addition of CX-5461 

significantly increases the dwell time and frequency of Type 2 events (as discussed in 

Chapter 4). However, compared to Ckit1, raw nanopore data traces of mutated sequences 

exhibited a higher amount of spike-like events (Type 1), indicating that the mutated 

sequences were less likely to form stable G-quadruplexes. Moreover, increased incidence 

of Type 1 events also reflects higher amounts of linear DNA being captured. This result is 

much more pronounced in the L2M2 and M2C samples, compared to other mutated 

sequences. L1M1 appears to have the most similar pattern to Ckit1 DNA, compared to 
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other samples. Similar to Ckit1 and L1M1, L1M2 and L2M1 data traces contain both Type 

1 and 2 events; however, the increased frequency of Type 1 events indicated less G-

quadruplex formation.113 Interestingly, addition of CX-5461 to L2M2 has shown slight 

increases in the signal event length when compared to L2M2 without the addition of CX-

5461 (Figure 20). 

 

 

 

 

Figure 20. Nanopore raw data traces. (Left) Schematics represent six variations of the 

Ckit1 sequence, containing 0 – 6 mutation points (purple circles) and their location on the 

G-quadruplex structure. Experiments were conducted in duplicate with and without CX-

5461 for all DNA sequences, including: positive control DNA (Ckit1), mutated sequences 

(L1M1, L1M2, L2M1, L2M2 and M2C) (top to bottom). (Middle) The  positive control 

(C-kit1) DNA spontaneously adopts the G-quadruplex, leading to long lasting current 

blockages (top panel); whereas M2C (containing 6 point mutations) is incapable of folding 

into a unimolecular G-quadruplex, causing a significant increase in frequency of spike-like 

events (bottom panel). (Right) Addition of CX-5461 did not show a clear visible effect on 

mutated sequences. In all experiments, the concentration of both DNAs was 1 µM. All 

traces were recorded at +160mV in a 1M salt solution buffered with 10mM Tris, 1mM 

EDTA and calibrated to pH 7.2. 
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Using circular dichroism (CD), we measured the optical absorbance of all the 

sequences investigated in this study (Figure 21). Both Ckit1 and Ckit1_CX formed a 

parallel G-quadruplex structure that was characterized by a strong positive peak at 263nm 

and a negative peak at 237nm (Figure 21A). Compared to Ckit1, the CD absorbance spectra 

of mutated sequences exhibited both positive and negative peaks between 220 – 300nm, as 

shown in Figure 21B – F.  

 

 

 

 

Figure 21. Circular Dichroism spectra of all tested sequences were measured between 220 

– 320nm, at room temperature. Samples were measured without (black line) and with the 

presence of CX415461 drug (dotted orange line). CD spectra of C-kit1 DNA had a positive 

peak at 263nm and a negative peak at 235nm, reflecting the presence a G-quadruplex 

structure with parallel folding topology. For all other sequences, these two peaks (at 235nm 

and 263nm) were broadened and shifted, indicating a change in the DNA structural 

topology. 
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L1M1 and L1M1_CX spectra were similar to that of Ckit1 and Ckit1_CX, 

respectively (Figure 21C). However, the peaks were significantly broadened and/or shifted 

in L1M2, L2M1, L2M2 and M2C samples. Diminishing of 263nm and 235nm peaks in 

mutated sequences indicate a reduction in parallel G-quadruplex formation and an increase 

in topological changes. This effect varies with the number and position of mutations. In the 

following sections, we will take a closer look at the structural volume and stability of these 

structures.  

5.4.3 Structural volume of Ckit1 and mutated sequences. We would like to 

understand if the volume of Ckit1 G-quadruplex is affected by presences of mutations and 

CX-5461. Previous work has shown that the potential volume of the secondary structure 

of the DNA could be determined by the current blockage amplitudes.104 For each sample, 

we selected at least 1000 current-blockage events that lasted longer than 1 ms for the 

analysis, as those with shorter dwell time were considered as translocation of unfolded 

linear ssDNA (Type 1 events). In accordance with the nanopore conductance with (I) and 

without (Io) sample translocation, we calculated the current-blockage amplitude (%I/Io). 

Without CX-5461, all samples folded into structures with a similar volume (for summary 

statistics, see Table 6). Specifically, the mean current blockage amplitude of all samples 

was approximately 69.7 ± 2.3% (Figure 22). Addition of CX-5461 greatly increased the 

current-blockage amplitude of Ckit1 (similarly observed in Chapter 4) and M2C by over 

5%, but exhibited little to no effect on other mutated structures (Figure 22).  
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Figure 22. Average current blockage amplitude at +160mV of all samples, including: 

Ckit1, L1M1, L1M2, L2M1, L2M2 and M2C without treatment (green) and with the 

addition of CX-5461 (orange). All samples exhibited a similar average current-blockage 

amplitude of 69 ± 2%. Addition of CX-5461 showed minimal effect on L1M1, L1M2, 

L2M1 and L2M2, but increased %I/Io of both Ckit1 and M2C by approximately 5%. The 

average %I/Io of each sample was found by selecting at least 1000 events to construct a 

density plot, following by fitting with Gaussian normal distribution. 

 

 

 

Table 6 

Summary statistics of event amplitude (%I/Io) 

 

 
 

 

Condition With 
CX 

Mean 
(%) 

Max  
(%) 

Min  
(%) 

Median  
(%) 

Std 
(%) 

Ckit1 
 

71.85 101.87 50.15 71.21 10.94 

Ckit1 x 72.89 100.76 50.08 74.27 10.08 

L1M1 
 

68.68 86.26 51.22 67.64 9.34 

L1M1 x 67.35 101.63 50.14 66.20 8.34 
L1M2 

 
70.78 98.71 50.48 69.77 8.58 

L1M2 x 71.87 101.13 51.02 69.93 9.81 
L2M1 

 
72.03 101.61 50.41 69.13 9.05 

L2M1 x 72.78 99.04 50.76 70.89 8.14 
L2M2 

 
72.75 99.04 50.76 70.88 8.14 

L2M2 x 73.79 94.00 51.84 71.07 8.09 
M2C 

 
68.81 98.34 53.75 67.47 5.42 

M2C x 77.23 99.91 52.67 76.09 6.75 
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5.4.4 Effect of CX-5461 on mutated Ckit1 G-quadruplex stability. Stability of 

the G-quadruplex structure is measured in relation to length of the current blockage. First, 

we constructed a box-and-whiskers plot for all the experimental conditions (Figure 23A). 

Upon calculating the summary statistics of these samples, we found that the majority of 

the event dwell times were between 1-100ms (with the exception of Ckit1_CX), with 

median ∆t decreasing in the sequence of: Ckit1 > L2M1 > L1M1 > M2C > L2M2 > L1M2.  

Addition of CX-5461 increased the samples’ ∆t to varying degrees, except for L2M1 and 

M2C, whose ∆t significantly decreased (Table 7). Specifically, the median ∆t of all samples 

in the presence of CX-5461 can be listed in decreasing order as follows: Ckit1 >> L1M1 > 

L2M2 > L1M2 > M2C > L2M1 (Table 7). In all experimental samples, there were multiple 

outliers, which were events with extremely long ∆t (several seconds to minutes). This was 

a result of metastable state of DNA—a phenomenon that was well described in previous 

studies.249-251 Thermal denaturation experiments were performed to assess the stability of 

the Ckit1 G-quadruplex and its mutated structures in each experimental condition (Figure 

22B – E). The melting curves were collected at 263 nm (which was the positive peak in the 

circular dichroism experiments), with temperatures ranging from 20 - 95oC. The melting 

temperature is determined when 50% of the DNA is unfolded. As discussed in Chapter 4, 

while the nanopore experiments were conducted in buffer containing 1M NaCl, thermal 

denaturation experiments were carried out in 0.1M NaCl environment, in order to keep the 

melting temperature of DNA secondary structure below 100˚C.  
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Figure 23. Stability of mutated Ckit1 G-quadruplex. (A) Grouped boxplot representations 

of the distribution of event dwell times for all samples, including: Ckit1, L1M1, L1M2, 

L2M1, L2M2 and M2C. All experiments were conducted in duplicate with (orange, right 

side) and without (green, left side) the addition of CX-5461. Ckit1 DNA is relatively more 

stable than its mutated sequences, as indicated by a higher median dwell time. Presence of 

CX-5461 increases stability of most sequences to varying degrees, except for L2M1, whose 

stability decreases. (B) Thermal denaturation studies were performed to determine the 

stability of G-quadruplex structures formed by mutated sequences with (orange dotted line) 

and without (solid green line) the presence of CX-5461. The secondary structure melting 

temperature, Tm, is the temperature, where 50% of the DNA are folded. Circular dichroism 

spectra were collected at 263nm, with temperature ramping from 20 – 95˚C. 

 

 

 

Among the samples, The L1M1 condition exhibited a melting curve that was 

remarkably similar to the positive control Ckit1 DNA, with the addition of CX-5461 

slightly shifting the melting curve to the right. Specifically, the observed melting 

temperature of L1M1 and L1M1_CX were approximately 65˚C and 70˚C, respectively 

(Figure 23B). This indicates excellent stability of the G-quadruplex both with and without 

CX-5461. Notably, Tm of L1M1 was slightly higher than that of Ckit1 in the same 

experimental buffer. This increase in structural stability was also reflected through a slight 
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increase in nanopore event dwell time of L1M1 sequence in comparison to Ckit1 DNA. 

However, this increase in dwell times was not statistically significant. On the other hand, 

L2M1 exhibited a straight down trending line and no inflection point in the melting curve 

(Figure 23D). The addition of CX-5461 to L2M1 somewhat rescued the sigmoidal shape 

that was characteristic of the melting curve of the positive control, but offbeat degrees of 

ellipticity persisted, indicating poor stability of the G-quadruplex. In other samples (e.g. 

L1M2, L2M2, and M2C), the behavior bore little to no resemblance to the positive control 

Ckit1 DNA with relatively low G-quadruplex stability at its peak degree of ellipticity. 

Moreover, the addition of CX-5461 did not rescue this aberrant behavior. 

 

 

 

Table 7 

Summary statistics of event dwell time (ms) 

 
 

 

 

5.4.4.1 Having more than one mutation destabilizes Ckit1 G-quadruplex. All 

three of the examined sequences with at least two mutations within the same level had 

significantly different dwell times than the positive control Ckit1 DNA (p < 0.001 for 

Condition With 
CX 

Mean 
(ms) 

Max 
(ms) 

Min 
(ms) 

Median 
(ms) 

Std 

Ckit1  4432.63 114411.35 1.05 5.75 13919.90 

Ckit1 x 11587.29 152850.00 1.02 47.36 26625.04 

L1M1  4283.26 51802.34 1.02 4.94 10577.08 

L1M1 X 1887.54 39545.14 1.04 11.73 6195.79 

L1M2  9.43 296.95 1.02 3.00 24.21 

L1M2 X 629.38 39771.09 1.02 5.04 3552.46 

L2M1  2153.12 65396.62 1.02 5.53 7404.17 

L2M1 x 31.49 1447.89 1.03 3.50 135.46 

L2M2  31.42 1447.89 1.03 3.51 135.28 

L2M2 X 6175.41 119939.50 1.02 8.54 16886.62 

M2C  15.27 3449.96 1.02 4.17 123.22 

M2C X 314.18 29303.41 1.02 4.94 1869.56 
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L1M2, L2M2, and M2C), with all exhibiting decreased dwell times (as shown in Table 8). 

This indicates that having multiple mutations within the same level of Ckit1 compromises 

the overall stability of the G-quadruplex, while having just one mutation did not. 

Furthermore, there were no significant differences between the dwell times of L1M1 and 

L2M1 or L1M2 and L2M2, but there were significant differences between L1M2 - L1M1 

and L2M2-L2M1, suggesting that the number of mutations has a much more relevant 

impact on G-quadruplex stability than the position (G-quartet level) of the mutation (Table 

9). 

5.4.4.2 The outer G-quartet layer is crucial to the binding of CX-5461. Addition 

of CX-5461 created significant changes in the stability of  Ckit1, L2M1 and L2M2  with 

opposite effects, suggesting different interactions of CX-5461 to the mutated Ckit1 

structures (Table 10). As expected, the addition of CX-5461 to the positive control Ckit1 

DNA proved to significantly increase Ckit1 G-quadruplex stability, as discussed in Chapter 

4. This was also the case with L2M2 (p < 0.001), which makes sense given that addition 

of CX-5461 somewhat rescued the shape of the denaturation curve. CX-5461 did not 

appear to have significant effects on L1M1, L1M2, or M2C (p = 0.091 , p = 0.976 , p = 

0.967 , respectively), although L1M1 did exhibit a notable, but not significant, increase in 

dwell time with the addition of Cx-5461. Because CX-5461 stabilizes G-quadruplex by 

binding to the DNA sequence,252 this may implicate the outer G-quartet (L1) is critical for 

an efficiency binding of CX-5461), because its mutation results in abrogation of the 

stabilizing effect. Having more than one mutated guanine on the first layer inhibits the 

formation of layer 1 G-quartet, thus interfering with CX-5461 binding to the structure. This 

is supported by the ability of CX-5461 to rescue stabilization of the G-quadruplex in the 
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Ckit1 and L2M2 conditions, both of which lacked mutations in the first layer of G-quartet 

(L1). However, addition of CX-5461 to L2M1 produced a significant difference that 

resulted in a decrease in dwell time, and thus a decrease in structural stability. This is 

indicative of a destabilizing interaction of unknown cause that L2M1 has with CX-5461. 

This follows the trend that was illustrated in the thermal denaturation curve produced by 

L2M1, where the addition of CX-5461 resulted in a drastically offbeat degrees of ellipticity 

from the expected melting curve. 

 

 

 
Table 8 

Statistical comparison between dwell times of mutated sequences and Ckit1. 

 
 

 

 

 

Table 9 

Statistical comparison between dwell times of mutated sequences. 

 

Groups Adj. p-value  

L1M1-Ckit1 1.0000 ns 

L1M2-Ckit1 0.0000 *** 

L2M1-Ckit1 0.0003 *** 

L2M2-Ckit1 0.0000 *** 

M2C-Ckit1 0.0000 *** 

*Note: adjusted p-values was obtained from using Anova on all samples, followed by Tukey’s 

post-hoc test.  

 

Groups Adj. p-value  

L1M2-L1M1 0.0000 *** 

L2M2-L2M1 0.0003 *** 

L2M1-L1M1 0.0950 ns 

L2M2-L1M2 1.0000  ns 

L2M2 - M2C 1.0000  ns 

L1M2 - M2C 1.0000  ns 

L1M1 - M2C 0.0000 *** 

L2M1- M2C 0.0000 *** 

*Note: adjusted p-values was obtained from using Anova on all samples, followed by Tukey’s 

post-hoc test.  
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Table 10 

Effect of CX-5461 on Ckit1 DNA and mutated sequences. 

 

 
 

 

 

5.4.5 Distinguishing unmutated Ckit1 sequences from mutated ones. We 

explored the feasibility of detecting mutated Ckit1 sequences by employing machine 

learning classification models on data obtained from nanopore single–molecular analysis. 

In particular, there were five models, including: K-nearest neighbor (KNN), Random 

Forest (RF), Logistic Regression (LG), Linear Discriminant Analysis (LDA), and 

Quadratic Discriminant Analysis (QDA), employed for the binary classification of mutated 

and unmutated Ckit1 DNA.  

To minimize the potential issue of overfitting one group, we sampled a balanced 

dataset, in which the number of mutated and unmutated sequences are represented 

eqrrrrrually (i.e. approximately 1000 events each). The dataset was comprised of two 

distinct groups. The first group, called “Ckit1”, was comprised of the current-blockage 

events of Ckit1 DNA. The second group, called “Mut”, consisted of an equal mixture of 

all the mutated sequences (e.g. L1M1, L1M2, L2M1, L2M2, and M2C). The dataset was 

then split into 80% and 20% portions for model training and validation purposes, 

respectively. Current – blockage amplitude (%I/Io) and dwell time (∆t) were selected as 

input features for the model. To evaluate the model’s performance, we compared their 

Groups Adj. p-value  

Ckit1_CX-Ckit1 0.0000 *** 

L1M1_CX-L1M1 0.0907 ns 

L1M2_CX-L1M2 0.9761 ns  

L2M1_CX-L2M1 0.0003 *** 

L2M2_CX-L2M2 0.0000 *** 

M2C_CX-M2C 0.9666  ns 

*Note: adjusted p-values was obtained from using Anova on all samples, followed by Tukey’s 

post-hoc test.  
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AUROC values. We ran the same five algorithms in duplicate on a dataset containing (1) 

all current-blockage events and (2) only those with %I/Io > 75%. The first one (1) yielded 

extremely poor results, with all algorithms returning an AUROC value of approximately 

0.5 (data not shown). Results obtained from the latter dataset (2) were similar, except for 

RF, whose median AUROC value was approximately 0.89 ± 0.04 (as shown in Figure 

24A).  

 

 

 

 

Figure 24. Machine learning models for classification of mutated C-kit1 sequence from 

unmutated one. (A) Evaluation of model performance based on the distribution of their 

AUROC value: models were ranked based on the median AUROC score and arranged from 

best to worst performance (top to bottom). (B) Confusion matrix shows results of random 

forest classification for mutated sequence from unmutated one using nanopore events. 

Unmutated sequences contained Ckit1 DNA and mutated group consists of all other 

sequences (i.e. L1M1, L1M2, L2M1 and L2M2). The random Forest classifier model 

yielded an overall sensitivity of 81.9%, specificity of 83.4% and balanced accuracy of 

82.7%. 

 

 

 

To visualize the true positive and false positive rates, we constructed a confusion 

matrix for the RF model (Figure 24B). This matrix shows the true positive and true negative 

prediction corners (black boxes) at the top left and bottom right, respectively.  On the other 
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hand, the false negative and false positive predictions are placed in the lower left and upper 

right corners (orange boxes). Thus, for mutated and unmutated Ckit1 sequences, the RF 

classifier yielded an 82.7% accuracy, 81.9% sensitivity and 83.4% specificity. As 

determined before, point mutations have varying effects on the secondary structural 

volume and stability. It was surprising to see that most classifiers yielded a poor 

performance since point mutations can increase or decrease the mutated structure’s volume 

and stability concurrently (depending on the number and position of mutation). This 

hindered the model performance. Applying the same classifiers on datasets containing 

Ckit1 and only one mutated sequence will enhance the accuracy of classifiers. However, 

this would not be practical in a real-world scenario, where the number and position of point 

mutation is unknown. 

5.5 Conclusions 

Through this nanopore single-molecule study, we determined the effect of point 

mutations on stability of Ckit1 G-quadruplex and CX-5461 stabilizing efficiency using the 

event dwell time. With a maximum width of approximately 2.1 nm,253 the G-quadruplex is 

able to fit within the 2.6 nm wide nanocavity entrance. However, the β-barrel entrance 

(constriction site) of the nanopore is just 1.4 nm wide, making it impossible for the G-

quadruplex structure to translocate without unfolding. Therefore, electrophoretic force 

drives the analyte into the nanocavity where it becomes trapped and either (1) unravels and 

translocates through the β-barrel and into the trans side of the test chamber, or (2) 

regurgitates backward into the cis solution.47 Previous studies have demonstrated that 

translocation events with G-quadruplex have significantly longer dwell times on the order 

of several seconds due to the extra time needed for the structure to unravel while it is 
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trapped in the nanocavity.47, 105 By contrast, simple linear DNA produces very short, 

transient current blockages.47 Taken together, this indicates that dwell time provides a 

valuable assessment of the structural stability of the G-quadruplex, with higher dwell times 

indicating a more stable structure. 

Results obtained from our study suggest that the number and position of mutations 

have an impact on G-quadruplex structural stability. Furthermore, addition of CX-5461 to 

samples does not have a significant effect on the stability of samples with a mutation on 

the top G-quartet (layer 1), implicating it as a crucial factor in the binding of CX-5461 to 

the DNA structure. Lastly, addition of CX-5461 to conditions with an intact level 1 (Ckit1 

positive control, L2M1, and L2M2) resulted in an increase in G-quadruplex stability, with 

the exception of L2M1 which oddly exhibited a decrease in stability. Using Random Forest 

algorithm on nanopore data, we were able to distinguish mutated Ckit1 sequences from 

unmutated ones with an overall sensitivity of 81.9%, specificity of 83.4% and balanced 

accuracy of 82.7%. Excessive activation of the C-kit1 gene is implicated in several human 

malignancies and its expression is downregulated by the stabilization of its G-quadruplex 

structure.254 Knowing the effect of mutation on drug efficiency can have implications in 

the implementation of cancer therapies, particularly the drug CX-5461. As mutations on 

G-quadruplex sequences have been observed in several cancers, this research may be 

helpful in constructing methods to predict therapeutic responses and personalizing cancer 

treatment.  
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Chapter 6 

 

Employing LiCl Salt Gradient to Slow Down DNA Translocation for Label-Free 

Detection of Cytosine Methylation 

 

6.1 Abstract 

In this chapter, we demonstrate a label-free detection, biological nanopore-based 

method to distinguish methylated cytosine (mC) from naked cytosine (C) in sample 

mixtures containing both C and mC at prolonged translocation duration. Using 15-fold 

increase in LiCl salt concentration going from cis to trans chamber, we increased the 

translocation dwell time of ssDNA by over 5-fold and the event capture rate by 6-fold in 

comparison with symmetric concentration of 1.0M KCl (control). Moreover, salt gradients 

can create a large electric field that will funnel ions and polymers towards the pore, 

increasing the capture rate and translocation dwell time of DNA. As a result, in 0.2M – 

3.0M LiCl solution, ssDNA achieved a prolonged dwell time of 52 𝜇s/nucleotide and a 

capture rate of 60 ssDNA per second. Importantly, lowering the translocation speed of 

ssDNA enhances the resulting resolution, allowing 5’-mC to be distinguished from C 

without using methyl-specific labels. We successfully distinguished 5’-mC from C when 

mixed together at ratios at 1:1, 3:7 and 7:3. Distribution of current blockade amplitudes of 

all mixtures adopted bimodal shapes, with peak-to-peak ratios coarsely corresponding to 

the mixture composition (e.g. the density and distribution of events shifted in 

correspondence with changes in 18b-0mC and 18-2mC concentration ratios in the 

mixture).This chapter was adopted from our published article (Vu, Trang, et al. 

"Employing LiCl salt gradient in the wild-type α-hemolysin nanopore to slow down DNA 

translocation and detect methylated cytosine." Nanoscale 11.21 (2019): 10536-10545.) 
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6.2 Introduction 

Cytosine methylation is the most well-established and understood epigenetic 

modification on DNA, affecting the activity and stability of genomic regions.118, 255-256 

Specifically, methylation of cytosine is the gain or loss of a methyl group on cytosine in 

the 5-position,56, 257-258 which is frequently found at CpG dinucleotides.256 These CpG 

nucleotides often occur in bunches widely known as “islands” which are linked to promoter 

regions of genes. Aberrant methylations of these regions can lead to gene inactivation or 

loss-of-function mutations.259 Beside DNA promoter regions, cytosine methylation of 

various types of RNA (e.g. tRNA, mRNA, and non-coding RNAs) has gained increasing 

attention in recent years.260-263 For instance, it was shown that specific signature 

methylation pattern of microRNAs (miRNA1, miRNA9, miRNA124 and miRNA137)  

could be used to identify ulcerative colitis patients with elevated risk for colorectal 

neoplasia.264 Unlike genetic mutations, which can occur anywhere in a gene, cancer-

specific cytosine methylation mostly locates at defined regions (e.g. the promoter of genes 

or on specific sequences), making it easier to devise targeted probes for molecular 

alterations. 

Currently, bisulfite-conversion is the “gold-standard” to detect and profile DNA 

methylated cytosine.265 However, bisulfite-conversion cannot directly identify 5-

methylated cytosine (5-mC) from native DNA. Unmethylated cytosine must first be 

converted to uracil, consequently, increasing the complexity of library preparation and the 

potentials for artifacts and biases. Due to extensive fragmentations in the bisulfite-

conversion process, any breaks at inserts can prevent downstream amplification of DNA.265 

Recently, several studies using both solid-state and biological nanopores have 
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demonstrated different ways to detect and quantify the presence of 5’-mC on both ss- and 

dsDNA by long-read sequencing,266-267 employing methyl-CpG-binding domain protein 

(MBD),56, 268 Kaiso-Zinc Finger (KZF),56 optical-tagging,57 among many others.145-148, 275 

Comparing to PacBio and bisulfate conversion, methylation detection with nanopore 

technology has yet to match the performance, but shows advantages on maintaining the 

DNA sequence complexity and imprinting.267   

In this chapter, we investigated the ability of wild-type α-hemolysin nanopore in 

label-free detection of methylation on cytosine, with a focus on slowing down translocation 

velocity to enhance the result readout and accuracy. Through research and analytics, 

several methods have been proposed to impede translocation velocity via decreasing 

experimental temperature, altering bulk density, changing applied potential, or using an 

alternating electric field.269 However, compared to those physical conditions, the effect of 

cation nature, electrophoretic, electroosmotic, and diffusioosmotic flows are far more 

significant on the translocation of DNA.269-271 In our study, electrophoretic, electroosmotic, 

and diffusioosmotic flows have been adopted to slow down the translocation velocity of 

ssDNA through biological nanopores, enabling label-free detection of 5-mC from C in 

ssDNA mixtures. 

6.3 Methods 

6.3.1 DNA samples. Synthetic 18-mer, single-stranded DNA purchased from 

Integrated DNA Technology (Coralville, IA) have the following sequences:  

Sample 1 (18b-0mC): 5’-TAA TCA TCG CGT ACT AAT-3’ 

Sample 2 (18b-2mC): 5’-TAA TCA TMG MGT ACT AAT-3’ (with M represents 5’-mC)  
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DNAs were suspended in a buffer solution containing Tris (10mM) and EDTA (1.0mM), 

titrated to 8.0 pH, then aliquoted and stored at -80oC until usage. For all experiments, DNA 

final concentration of 1 μM in the cis chamber was used. 

6.3.2 Experimental setup. Each chamber was filled with electrolyte solutions with 

either LiCl or KCl solution, with a salt concentration of 0.2M, 1.0M or 3.0M, buffered with 

10mM Tris and titrated to pH 7.2. The salt concentrations in each chamber varied based on 

the experimental conditions being tested. 

6.3.3 Single-channel recording. Single-channel recordings were performed using 

Axopatch 200B (Molecular Device Inc.), filtered with a built-in 4-pole low-pass Bessel 

Filter at 5kHz. Data were acquired with Clampex 10.7 (Molecular Device Inc.) and Axon 

Digidata 1550B A/D converter (Molecular Device Inc.), at a sampling rate of 20 kHz. The 

data were analyzed using Clampfit 10.7 (Molecular Device Inc.), Excel (MicroSoft) and 

MatLab (2017a) software. Event blockage amplitudes were determined from amplitude 

histograms by fitting the peaks to Gaussian functions (single-sample and mixture models). 

The duration and occurrence of short-lived blocks for DNA translocation were obtained by 

fitting the dwell-time histogram to an exponential distribution. Only current-blockage 

events with %I/Io ≥ 70% were selected for data analysis.35 Those with %I/Io < 70% are 

considered as brief interaction of DNA and the pore entrance (e.g. interaction of hairpin 

structure with vestibule), rather than DNA translocation, thus, were disregarded.237 Data 

were given as the mean ± SD, based on at least three separate experiments. 
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6.3.4 Mixture analysis. Current blockage events were calculated as the percent 

blockage of the open pore current (%I/Io). To predict the distribution of the two samples in 

mixture solutions, %I/Io was first calculated, then fitted with Gaussian Mixture Model (two 

components) in MatLab (2017a). 

6.4 Results and Discussions 

We employed the α-hemolysin nanopore as a single channel sensing element to 

detect ssDNA at single-molecule level. Experiments were performed on two single-

stranded DNA samples with identical sequences, containing either cytosine, or 5-

methylcytosines at the center, hereafter, called C-DNA and mC-DNA. C-DNA has a 

sequence of 5’-TAA TCA TCG CGT ACT AAT-3’, and mC-DNA has a sequence of: 5’-

TAA TCA TMG MGT ACT AAT-3’ (with M standing for 5’-mC). Most of the studies 

have largely investigated long nucleotide sequences (hundreds to thousands bases), thus, 

in this study, we selected 18-mer sequences to investigate the effect of electrophoretic, 

electroosmotic and methylation hydrophobicity on shorter strands, such as tRNA and 

miRNA. All experiments were reproduced multiple times, yielding comparable results. 

The open pore conductance varies upon the change of solute ionic concentration and 

gradient. Let Ctrans/Ccis be the ionic concentration ratio between the trans and cis chambers. 

With Ctrans/Ccis > 1 (higher  salt concentration in the trans side), there is a constant diffusion 

of cation from the trans to cis chamber, creating a negative current even if there is no 

external voltage applied.  

The α-hemolysin nanopore is water-filled, thus, the charge distribution inside the 

pore is relatively consistent, reflected by the approximately linear I-V curves of α-
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hemolysin nanopore (Figure 25). The 5kHz low-pass Bessel filter in Axopatch 200B and 

20,000 s-1 sampling events were selected for all measurements in this study.  

 

 

 

 

Figure 25. Current -voltage (I-V) curves of the α-hemolysin nanopore at various 

experimental conditions. 

 

 

 

6.4.1 Li+ and salt gradient increase translocation time. Cations, depending on 

their ionic radii and concentration, can affect the electrophoretic mobility of DNA 

differently.272-274 To examine this, we conducted two sets of experiments on both samples, 

18b-0mC and 18b-2mC DNAs, at various conditions of: (1) symmetric and (2) asymmetric 

salt concentration in the cis and trans chambers. For symmetric 1.0M – 1.0M solutions, we 

found that the ratio for the translocation time, ∆t, of ssDNA is KCl : LiCl ~ 1 : 2.3 (Figure 

26A – B). When comparing within the same type of sample (either 18b-0mC or 18b-2mC) 

translocated through the pore at +120mV, as the ionic concentration in the trans side 

increases from 1.0M LiCl to 3.0M LiCl, the translocation time, ∆t, increased approximately 

1.3 times (Figure 26 C – D). More notably, the addition of a salt gradient is shown to further 
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intensify the magnitude of ssDNA translocation time through the nanopore. With a 15-fold 

increase in ionic concentrations going from the cis to the trans chambers (0.2M – 3.0M 

LiCl), the average translocation times of 18b-0mC and 18b-2mC DNA are 0.945 ms and 

0.765 ms, respectively, at biased voltage of 120 mV. In other words, the addition of a salt 

gradient (0.2M – 3.0M LiCl in cis/trans) increases the translocation times of both samples 

by 2-fold and 5-fold, when compared to the results obtained from 1.0M – 1.0M LiCl and 

1.0M – 1.0M KCl solutions of the same sample type (either 18b-0mC or 18b-2mC, as 

shown in Figure 26A – D). Note that the open pore current depends on the electrolyte’s 

conductivity and ionic concentration. Thus, amplitudes of open pore current decreases with 

decreasing ionic concentration in the cis side, reflected by current blockages with various 

amplitudes (Figure 26E – F).  

Overall, an increase in salt concentration gradient going from the cis to the trans 

chamber results in a proportional elongation of individual DNA translocation time. 

Notably, in any given experimented solutes and applied voltages, mC-DNA translocate 

through the nanopore faster than C-DNA does. This result agrees with findings from a 

previous study, showing that addition of a methyl group on Cytosine (mC) increases the 

local hydrophobicity and rigidity of G-mC bps, thus leading to a smoother and faster 

translocation of mC-DNA through the nanopores.275 

To understand the changes in ∆𝑡 observed in this experiment, we scrutinize the 

effect of Li+ ions on ssDNA and its surrounding environment. Li+ ions can effectively 

reduce the mobility of ssDNA through the α-hemolysin nanopore, because of its counter-

ion effect and physical-chemistry properties. In theory, electrolyte solution containing 

monovalent counter-ions can alter the electrophoretic mobility of DNA in different ways, 
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including changing water’s bulk properties,276 modifying DNA conformation, and 

affecting the preferential binding of counter-ions to DNA.272, 277-279 More specifically, 

binding of counter-ions partially neutralizes the negatively charged phosphate backbone; 

which in turn decreases the overall effective net charge and mobility of DNA molecule.272, 

280  

 

 

 

 

 

Figure 26. Comparison of cation effects on DNA translocation time. (A – D) 18b-0mC and 

18b-2mC DNA translocation time, ∆t, in: (A) 1.0M – 1.0M KCl (control), (B) 1.0M – 1.0M 

LiCl, (C) 1.0M – 3.0M LiCl, (D) 0.2M – 3.0M LiCl (optimal condition). The recorded ∆𝒕 

were plotted as a function of applied voltage at 100mV, 120mV, and 140mV. All points 

are the value of the fit with standard error. Each data is overlaid with over n = 2000 

separated translocation events recorded per data point. The 18b-2mC DNA, with an 

increased in hydrophobicity due to the addition of methyl groups, can translocate through 

the nanopore faster than 18b-0mC DNA does at any given experimental condition. At 0.2M 

– 3.0M LiCl (cis/trans), event translocation times were prolonged approximated by 6-fold 

for both DNA samples, when compared to 1.0M KCl (control). (E-F) Characteristic current 

blockade signatures representing the 18b-0mC DNA (left) and 18b-2mC DNA (right) 

through the α-hemolysin nanopore are shown. 18b-2mC DNA generates shallower current 

blockages than 18b-0mC does for all applied voltages. Overall, the current blockage 

amplitude, ∆𝑰, is a dependence of cation and its concentration in the experimental solution. 
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Previous studies showed that binding affinities of cations to DNA are inversely 

proportional to the radius of the specific binding ion. Thus, binding affinity of cations to 

DNA increases with decreasing ion radius, explaining the increased bond strength of 

binding Li+ as opposed to K+. The measured radii of Li+, Na+ and K+ has been reported as 

follows: 0.69, 1.02 and 1.38 Å, respectively.276, 281 Lithium shows the strongest binding 

affinity, as well as the longest binding time, resulting in increased translocation times of 

ssDNA in solid-state,271 and in biological nanopores, as shown here. 

However, the physical-chemistry properties of Li+ in fact are a greater contributor 

in decreasing the mobility of DNA. Studies show that the effects of these binding counter-

ions are due to changes in viscosity of the electrolyte solution, and perturbed hydrogen, 

leading to a decrease in the mobility of both ss- and dsDNA.282 Specifically, lithium is 

considered a water making ion, since it has a greater number of hydrogen bonds in solution 

compared to neat water (∆NHB). In lithium, the ∆NHB is 0.28, whereas potassium, a water 

breaking ion, has a ∆NHB of -0.58.272 A positive ∆NHB indicates an increase in the friction 

between water molecules due to its effect on hydrogen bonding.272 The rotational 

correlation times of water molecules may indicate DNA mobility since they are related to 

the number of hydrogen bonds between the water molecules.279 Overall, the viscosity 

coefficient of lithium is higher than the viscosity coefficient of potassium, further 

indicating that DNA is less mobile in lithium ion solution than potassium ion solution.272 

Higher viscosity leads to a decrease in DNA mobility; and therefore, its increased 

translocation time.283 
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6.4.2 High ionic concentration decreases DNA mobility. Increase in solute bulk 

conductivity at high ionic concentration can prolong the translocation time of DNA.284 An 

approximate 2-fold increase in ∆t is observed as the ionic concentration switches from 

symmetric 1.0M to 3.0M of KCl or LiCl (Table 11 and Table 12). This can be explained 

by the interionic effects at high concentration, which as a result, increases the resistivity of 

the ionic solution.284 Interionic effects occur when ions are submerged in an ionic space 

with a net charge opposite that of the ion’s.284-286 Thus, this ionic solution diminishes the 

mobility of the ions within through a drag force. This interionic effect is related to the 

concentration of the ionic solution in that a weak electrolyte solution promotes weak effects 

whereas a strong electrolyte solution promotes strong effects. Furthermore, in highly 

concentrated solute (e.g. 3.0M LiCl), DNA molecules are saturated with counter-ions that 

can decrease effective charges on the DNA and therefore, prolong the translocation time. 

Notably, lowering the ionic concentration in the cis chamber, while keeping the trans 

chamber with the same concentration (1.0M – 3.0M LiCl and 0.2M– 3.0M LiCl) can 

further increase the translocation time of ssDNA (Table 13). This phenomena were 

explained in a previous study.287 Briefly, longer translocation time of DNA under 

asymmetric salt concentration is an effect of increasing electroosmotic flow of counter-

ions along the DNA. With the salt concentration lowers in the cis than in the trans chamber, 

cations move from trans to cis, down the direction of both electrical and chemical potential 

gradients. Thus, electroosmotic flow of cation is significantly increased.287 This further 

provides a drag force opposed to DNA motion in the pore, hence, hindering the 

translocation speed of DNA. Through lowering the ionic concentration of electrolyte 
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solution in the cis side, while keeping trans side constant, we achieved the highest 

electroosmotic flow of cation (trans to cis) at 0.2M – 3.0M LiCl. 

 

 

 

Table 11 

Summary of event analysis for 18b-0mC sample in KCl solutions 

 

 Amplitude (pA) Dwell time (ms) Frequency (s-1) 

 Mu Sigma Tau S.E. Tau S.E 

1M-3M KCl -179.05 3.82 0.32 0.04 10.08 0.38 

1M-1M KCl -101.79 6.67 0.17 0.003 6.72 0.43 

3M-3M KCl -282.99 4.84 0.47 0.015 1.30 0.06 

3M-1M KCl -169.38 4.56 0.13 0.011 0.98 0.08 

3M-0.2M KCl -109.72 2.34 0.14 0.067 0.24 0.04 

 

Note: All data were collected at 120mV, pH 7.2. Experiments with asymmetric 

concentration are denoted in the order of cis – trans concentration. 

 

 

 

 

Table 12 

Summary of event analysis for 18b-0mC sample in LiCl solutions 

 

 

Note: All data were collected at 120mV, pH 7.2. Experiments with asymmetric 

concentration are denoted in the order of cis – trans concentration 

 

 

 

 Conc. Amplitude (pA) Dwell time (ms) Frequency (s-1) 

Condition Trans/ 

Cis 

Mu Sigma Tau S.E. Tau S.E. 

0.2M-3M LiCl 15 -79.63 2.49 0.945 0.08 55.62 3.32 

0.3M-3M LiCl 10 -88.35 0.47 0.88 0.05 52.03 4.70 

0.5M-3M LiCl 6 -87.14 0.21 0.81 0.06 47.62 2.08 

1M-3M LiCl 3 -137.4 4.39 0.67 0.02 34.53 1.72 

2M-3M LiCl 1.5 -152.3 3.65 0.57 0.07 2.44 0.16 

3M-3M LiCl 1 -166.4 3.39 0.52 0.02 0.68 0.09 

3M-1M LiCl 0.33 -168.1 4.31 0.19 0.02 1.47 0.13 

3M-0.2M LiCl 0.067 -149.2 0.61 0.18 0.01 0.94 0.13 

1M-1M LiCl 1 -79.27 3.54 0.38 0.02 4.8 0.31 

1M-1M KCl 1 -101.8 6.67 0.17 0.01 6.72 0.43 
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Table 13 

Effect of salt concentration on the translocation events 

 

 18b-0mC 18b-2mC 

 I (pA) ∆t (ms) 𝒇 (s-1) I (pA) ∆t (ms) 𝒇 (s-1) 

1M-1M KCl -101.79 ± 

6.67 

0.17 ± 

0.01 

6.72 ± 

0.43 

101.06 ± 

4.38 

0.16 ± 

0.01 

10.29 ± 

1.08 

1M-1M LiCl 79.27 ± 

3.54 

0.38 ± 

0.02 

4.80 ± 

0.31 

77.50 ± 

5.25 

0.36 ± 

0.02 

7.04 ± 

0.77 

1M-3M LiCl 137.40 ± 

4.39 

0.67 ± 

0.02 

34.54 ± 

1.72 

131.21 ± 

4.73 

0.63 ± 

0.02 

35.31 ± 

4.35 

0.2M-3M LiCl 79.63 ± 

2.50 

0.95 ± 

0.08 

55.62 ± 

3.33 

74.03 ± 

2.56 

0.76 ± 

0.08 

59.84 ± 

1.82 

 

(Note: All data were collected at 120mV, pH 7.2. Experiments with asymmetric 

concentration are denoted in the order of cis – trans concentration) 

 

 

 

6.4.3 Effect of salt gradient on the event occurrence. Salt concentration 

asymmetry (0.2M – 3.0M LiCl) results in a significant increase in the event capture rate. 

A series of experiments were conducted by varying the ionic concentration between the cis 

and the trans sides revealing significant changes in the amplitudes, as well as dwell time, 

and occurrence of current blockage events. Both of the latter properties are inversely 

proportional to Ctrans/Ccis (the ionic concentration ratio going from trans to cis chamber). 

In other words, ∆t and  𝑓s significantly increases when Ctrans/Ccis > 1 and decreases rapidly 

with Ctrans/Ccis < 1 (event data traces are shown in Figure 27 and Figure 28). Interestingly, 

although the event capture rate is controlled by multiple factors (e.g., ionic concentration, 

voltage amplitude, and cation’s nature), ionic concentration gradient between the cis and 

trans sides exhibits the most abundant effect. Figure 29A–D shows sample traces for 

typical events of 18bp ss-DNA translocations in 1.0M – 1.0M KCl, 1.0M – 1.0M LiCl, 

1.0M – 3.0M LiCl, and 0.2M – 3.0M LiCl salt solutions (from top to bottom). We found 

that for 1.0M solutions, the ratios for the experimental event occurrence (or event 
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occurrence, 𝑓s) of ssDNA are KCl/LiCl ~ 1.40 and 1.46 for C-DNA and mC-DNA samples, 

respectively. Upon changing the salt concentration between cis and trans chambers from 

1.0M – 1.0M LiCl to 1.0M –3.0M LiCl and 0.2M – 3.0M LiCl, occurrence increase 

significantly. As shown in Figure 29E – F, while the translocation times are found to 

gradually increase, the event occurrences, 𝑓s, quickly reached maximum value as the 

trans/cis concentration ratio exceed 2-fold. Specifically, C-DNA sample increase 

approximately 12 and 82 times upon changing the solute from symmetric 1.0M – 1.0M 

LiCl to 0.2M – 3.0M LiCl, and from symmetric 3.0M – 3.0M LiCl to 0.2M– 3.0M LiCl, 

respectively (Table 13). Interesting, both of the plots obtained from Figure 29E – F have a 

logarithmic trendline (R2 ≥ 0.92), different from a linear one obtained previously in solid-

state nanopore system.271, 287 

 

 

 

 

Figure 27. Sample data traces and current blockage events of 18b-0mC in KCl electrolyte 

buffers with varied concentrations. Different ionic concentrations between the cis- and the 

trans side lead to significant changes in events dwell time and occurrence. All data were 

collected at 120mV, pH of 7.2. 
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Figure 28. Sample data traces and current blockage events of 18b-0mC in LiCl electrolyte 

buffers with varied concentrations. Different ionic concentrations between the cis- and the 

trans side lead to significant changes in events dwell time and occurrence. All data were 

collected at 120mV, pH of 7.2. 

 

 

 

 
 

Figure 29. Effect of salt concentration on event occurrence. (A – D) Raw data traces of 

18b-0mC and 18b-2mC DNA translocate through the nanopore at: (A) symmetric 1.0M 

KCl, (B) symmetric 1.0M LiCl, (C) asymmetric 1.0M – 3.0M LiCl, (D) asymmetric 0.2M 

– 3.0M LiCl. (E) Correlation between trans/cis concentration ratio and event occurrence of 

both samples, and (F) Correlation between trans/cis concentration ratio and dwell time  of 

both samples. For all experiments, ionic concentration of the trans side was fixed at 3.0M 

LiCl, while cis concentration decreases from 3.0M to 0.2M LiCl. At any given 

experimental condition, the event occurrence of both samples was comparable, while the 

translocation time of 18b2mC were shorter than 18b0mC DNA. All data presented were 

collected at 120mV applied voltage. 
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In the presence of salt concentration asymmetry, the drastic increase in attraction 

of ssDNA toward the nanopore is a consequential result of two main factors: 

electrophoretic effects and diffusioosmotic flow.288 Specifically, as the constant current of 

ions flowing through the nanopore, it creates a long range electric field funneling ions and 

DNA toward the pore,287-291 increasing the DNA electrophoretic motion.288 Moreover, 

because of the asymmetric salt concentration between the cis  and the trans sides, there is 

a constant diffusion of ions between the two chambers, creating an additional electric field. 

For concentrations lower on the cis than the trans side of the pore, the created electric field 

is larger than if the concentrations were reversed.292 The stronger the electric field, the 

better the pore is able to pull cations through the membrane.292 Since the asymmetric salt 

concentration is increasing the electric field within the pore, it is also increasing the 

effective voltage in the cis side without reducing translocation times.287 This effect is 

mostly due to the conductance of the pore which is dependent on both the polarity and 

magnitude of the voltage applied.281  Thus, using asymmetrical salt concentration can 

greatly enhanced capture rate, proven in previous studies by successful detection of 

extremely low concentration samples  (at pico- and nanomolar range).293-294 

6.4.4 Label-free detection of cytosine methylation. Following the analysis of Li+ 

and salt concentration asymmetry effect on ssDNA, we further investigate the ability of the 

α-hemolysin nanopore to detect and discriminate methylated cytosine in both pure and 

mixed samples with unmethylated cytosine. Using various methods, previous works have 

shown that both solid-state and biological nanopores can be used to distinguish 5’-mC from 

C.56-57, 135, 283, 295-296 Because of the principle of electrical current spectroscopy, the α- 
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hemolysin nanopore can discern subtle structural changes on a single molecule through 

electrical current signatures.  

 

 

 

 

 

Figure 30. Detect and distinguishing methylated cytosine. (A) Peak values of gaussian 

fitting for current blockage, ∆𝐼 (pA), of pure samples containing only 18b-0mC DNA 

(orange) or 18b-2mC (yellow) at: 1.0M – 1.0M KCl (control), 1.0M – 1.0M LiCl, 1.0M 

– 3.0M LiCl, and 0.2M– 3.0M LiCl (optimal condition). Peak-to-peak distance increases 

as a function of the difference in salt concentrations between the cis and trans chambers, 

with the highest peak discrepancy achieved at 0.2M – 3.0M LiCl (cis/trans). (B) Gaussian-

fittings for the distribution of current blockage amplitude for both samples at 0.2M – 3.0M 

LiCl.  (C) Raw data trace of the 1C – 1MC mixture contains current blockage events with 

two different levels, denoted as ImC for mC-DNA events and IC for C-DNA events, 

respectively. (D-F) Distribution of current blockages of 18b-0mC and 18b-2mC mixtures 

of different ratios: (D) 1:1, (E) 3:7, and (F) 7:3. The distribution of event blockages exhibits 

bimodal shapes for all mixtures. All data were collected at 120mV applied voltage. 
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Figure 31. Gaussian fittings of 18b-0mC and 18b-2mC samples’ event blockages at: 1M-

1M KCl, 1M-1M LiCl, 1M-3M LiCl, and 0.2M-3M LiCl. As the concentration gradient 

between cis- and trans chamber increases, the peak-to-peak distance between two samples 

also increases. All data were collected at 120mV at pH 7.2 solutions. 

 

 

 

The two samples employed in this study, C- and mC-DNAs, have an identical 

sequence, but differ in 5’-mC content. Gaussian-fittings of their current blockade 

information were then overlaid, revealing the changes in current blockages with regards to 

the electrolyte (see Figure 30A). Under symmetrical salt concentration of 1.0M KCl on 

both cis and trans sides, 5’-mC and C show the least discrepancy between one another 

(Figure 30A and Figure 31). Whereas in LiCl electrolyte solutions, the two Gaussian peaks 

are clearly separated from one another, with a peak-to-peak distance increase in direct 

relationship with the asymmetric concentration difference of LiCl between the cis and trans 

sides (Figure 31). The difference in peak position is most pronounced for experiments 
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conducted at 0.2M – 3.0M LiCl (Figure 30A – B). This finding agrees with our hypothesis 

that reduced translocation speeds of DNA through the nanopore can increase the resolution 

of readout results, allowing 5’-mC to be distinguished from C. Notably, C-DNA causes a 

slightly deeper current blockade than mC-DNA does, at any experimental conditions. 

To further examine the ability of α-hemolysin nanopore in distinguishing 5’-mC 

from C within the same solution, we performed experiments on the mixtures of C- and mC-

DNA samples at different ratios (C : mC): 1:1, 3:7, and 7:3 (see Figure 30D – F). As 

discussed in previous sections of this study, the 0.2M – 3.0M LiCl experimental condition 

has the most pronouncing effects on the event occurrence and dwell time of ssDNA; thus, 

was chosen for this second set of experiments. A sample current trace of the C-DNA : mC-

DNA mixture (1:1 ratio), with two level event blockades, is depicted in Figure 30C. Herein, 

we developed a MatLab code employing a Gaussian-fitting for a mixture with n 

components (n = 2). Histograms of current blockades of all mixtures adopted a bimodal 

shape, contributing to the presence of 5’-mC and C. The predicted Gaussian-fittings yield 

peak-to-peak ratios that are coarsely corresponded to the mixture composition, specifically, 

with the density and distribution of events shifted in correspondence with changes in 18b-

0mC and 18-2mC concentration ratios in the mixture (Figure 30E – F). 

Different methods to detect and quantify 5’-mC on both ss- and dsDNA using 

nanopores have been demonstrated in previous studies.56-57, 135, 295-296 In theory, the current 

blockade amplitude is directly corresponded to the size of the molecule translocating 

through the pore. Although the addition of a methyl group slightly increases the size of the 

5’-mC base, whether 5’-mC DNA cause a smaller or larger current blockage than C DNA 

is dependent on the near sequence of the DNA strand. The magnitude of the current 
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blockade produced by mC, compared to C, translocating through the α-hemolysin nanopore 

is found to be varied between ours and previous studies,295-296 this inconsistency in current 

blockage amplitude indicates that the size of a methylated DNA strand is sequence-

dependent. It is well-known that cytosine methylation can alter the local DNA structure.297-

299 Cytosine methylation has influence on DNA curvature and can induce local distortion 

in the structure of DNA.297-298 Moreover, the presence of methyl groups can exert an effect 

on A-tracts position up to three base pairs away from the site of methylation.299 

Furthermore, the presence of hydrophobic methyl group can subtly widen the major 

groove, and in turn, narrow the minor grove, leading to steric hindrance.300 

Moreover, presence of a cytosine methylation can increase the angle of DNA roll 

by 6º or decrease its propeller twist by 5˚, depending on the local sequence.301 Thus, we 

suggest that in order to achieve successful label-free detection and profiling methylated 

cytosine using α-hemolysin nanopore, the interaction between epigenetic modification and 

neighboring nucleotides should be carefully considered. Recently, the Rohs group 

developed a high-throughput method, named methyl-DNAshape,301 which could be used 

to predict the effect of cytosine methylation on DNA. This should be a promising tool to 

couple with nanopore assay for cytosine methylation detection. 

6.5 Conclusions 

In this study, we have investigated the effect of salt gradients and the nature of 

monovalent cations (Li+ and K+) on ssDNA translocation dwell time through the 𝛼-HL 

nanopore. Firstly, the attraction of cations to DNA is shown to be an important factor in 

affecting translocation speeds. Cations reduce the overall charge of DNA molecules and 

the interactions between DNA and counter-ions cause significant changes in the physical 
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properties of DNA.292 The counter-ions binding to DNA effectively lower the overall 

charge on DNA, lessening the electrophoretic drive of the system, and lowering 

translocation speeds. Ion binding to DNA is independent of the ion type, however, bond 

strengths are not equal; Li+ bonds last longer on average in comparison to Na+, which last 

longer than K+ bonds. The difference in bond strengths lead to different net forces acting 

on the DNA, and thus velocity differs depending on the type of electrolyte solution.302 

Notably, the stronger electroosmotic flow in the presence of LiCl than KCl can further aid 

in the prolonged translocation time of ssDNA through the α-hemolysin nanopore.  

Secondly, previous experiments show that DNA is saturated with counter-ions, 

thus, increasing the salt gradient will decrease the charge on the DNA.269 Additionally, the 

continuum flow theory based on the Navier-Stokes equations assumes the state variables 

(such as density) do not significantly change over intermolecular distances. However, 

observations showed fluctuations in fluid density close to the surface in molecular 

dynamics simulations and experiments, hence, shear viscosity near the nanopore wall 

dramatically increases, leading to slower translocation times.284 Salt gradients can create a 

large electric field that will funnel ions and polymers towards the pore,309 increasing the 

capture rate and mean translocation time of DNA.288 For concentrations lower on the cis 

than the trans side of the pore, the created electric field is larger than if the concentrations 

were reversed.287 The stronger the electric field, the better the pore is able to pull cations 

through.292 

Through a series of comparative studies between C-DNA and mC-DNA, we found 

that in a pure sample (containing only either 18b0mC or 18b2mC) with any of the salt 

gradient conditions listed in this study: (1) mC-DNA has a shorter translocation time, and 
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(2) a smaller current blockage amplitude than C-DNA does. In the presence of cytosine 

methylation, the local structure of DNA strands is altered in a sequence-specific manner, 

thus, increasing or decreasing the current blockage amplitude of methylated DNA 

comparing to an unmethylated strand. Interestingly, in mixtures containing both cytosine 

and methylated cytosine, mC-DNA exhibits a lower pore selectivity than C-DNA does. 

Using the LiCl salt concentration asymmetry, we were able to detect and distinguish mC-

DNA from C-DNA without the use of labels, or chemical modifications. 
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Chapter 7 

 

Enhancing Cytosine Methylation Detection with MBD2 Protein 

 

7.1 Abstract 

In this chapter, we explored the feasibility of enhancing the nanopore signal for 

methylated cytosine using engineered methyl-binding domain 2 (MBD2). Dissociation and 

translocation of double-stranded DNA through a biological nanopore causes a current 

blockage event with distinct levels. Our results showed that cytosine methylation increases 

DNA duplex stability, thus, significantly increasing the event translocation time. 

Moreover, our results showed that the presence of MBD2 protein significantly increased 

the event amplitude and strand dissociation time. Finally, we explored the feasibility of 

distinguishing unmethylated from methylated DNA using supervised machine learning 

models. Addition of MBD2 protein significantly increased the models’ performance, 

yielding the optimal classification model with 88% sensitivity and 86% specificity. 

7.2 Introduction 

In Chapter 6, we investigated the possibility of label-free detection of DNA 

methylation using the 𝛼-hemolysin nanopore. With the aid of an ionic gradient between 

the cis and the trans chambers, we were able to distinguish between ssDNA containing 

methylated and unmethylated cytosine in mixtures with various composition. In theory, the 

current blockade amplitude directly corresponds to the size of the molecule translocating 

through the pore. However, label-free detection of 5-methyl-cytosine (5mC) using the 𝛼-

hemolysin nanopore remains challenging because current blockade amplitude of 5mC is 

dependent on its interaction with the neighboring nucleotides, which can induce possible 

local conformational changes.  
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Methyl-CpG-binding proteins (MBPs) are proteins that are able to identify 

methylated cytosine paired with guanine dinucleotides (CpGs), to recruit co-repressor 

molecules and modify the surrounding chromatin to block transcription.303 MBPs play an 

important role in mediating the silencing of gene expression, and are of particular interest 

because they serve as great identifiers for DNA methylation.  

In this chapter, we explore the feasibility of using MBP, specifically methyl-

binding domain 2 (MBD2 protein) as a tag for detection of methylated DNA. Specifically, 

we designed synthetic dsDNA fragments containing the GREM_1 promoter region 

sequence, with single-stranded overhangs. MBD2 and methylated DNA conjugate to form 

MBD2-DNA complexes, which can amplify the signals of current-blockages caused by 

methylated cytosine on the dsDNA.304-306 Additionally, the single-stranded overhangs can 

translocate through the constriction part of the pore and reside in the long 𝛽-barrel stem, 

allowing DNA duplex to unzip with a voltage pulling force.  Using ionic spectroscopy, we 

showed that binding of MBD2 significantly enhanced the current amplitude difference in 

methylated and unmethylated DNA fragments. We also evaluated the effect of adding 

MBD2 protein on the overall performance of five supervised machine learning algorithms, 

to classify unmethylated from methylated DNA. 

7.3 Methods 

7.3.1 DNA samples. Synthetic double-stranded DNA with single-stranded 

overhangs were designed and purchased from Integrated DNA Technology (IDT – 

Coralville, IA). DNA oligonucleotides utilized in this study had the following sequences 

(underlined = single-stranded region, bolded  = GREM_1 promoter region, M  = 

methylated cytosine):  
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u100 DNA (unmethylated DNA):  

Forward strand: 5’ – CTT CTG ACT GGG GAG AGG CGC GGC CCC GGG 

CCG CGC TCT GCC GCCGC ATT TAA ACG GGA GAC GGC GCG ATG CCT 

GGC ACT CGG TGC GCC TAT CTA TGT G– 3’ 

Reverse strand: 5’- GCG CAC CGA GTG CCA GGC ATC GCG CCG TCT 

CCC GTT TAA ATG CC GCG GCA GAG CGC GGC CCG GGG CCG CGC CTC 

TCC -3’ 

m100 DNA (Methylated DNA):  

Forward strand: 5’ – CTT CTG ACT GGG GAG AGG CGC GGC CCC GGG 

CCG CGC TCT GCC GCMGC ATT TAA ACG GGA GAC GGC GCG ATG CCT 

GGC ACT CGG TGC GCC TAT CTA TGT G– 3’ 

Reverse strand: 5’- GCG CAC CGA GTG CCA GGC ATC GCG CCG TCT 

CCC GTT TAA ATG CM GCG GCA GAG CGC GGC CCG GGG CCG CGC CTC 

TCC -3’ 

m100•MBD2: methylated DNA (m100) sequence conjugated with MBD2 protein.  

Forward strand: 5’ – CTT CTG ACT GGG GAG AGG CGC GGC CCC GGG 

CCG CGC TCT GCC GCMGC ATT TAA ACG GGA GAC GGC GCG ATG CCT 

GGC ACT CGG TGC GCC TAT CTA TGT G– 3’ 

Reverse strand: 5’- GCG CAC CGA GTG CCA GGC ATC GCG CCG TCT 

CCC GTT TAA ATG CM GCG GCA GAG CGC GGC CCG GGG CCG CGC CTC 

TCC -3’ 

Upon delivery, all DNAs were suspended in a standard DNA storage buffer 

containing 10mM Tris, 1mM EDTA and titrated to 8.0pH. All samples were then aliquoted 
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into small volumes and stored at -80˚C until usage, in order to prevent multiple thaw-freeze 

cycles that can degrade and affect DNA quality. For both nanopore and circular dichroism 

(CD) experiments, a final DNA concentration of 100 nM was used. 

7.3.2 Methyl-binding domain 2 (MBD2) protein. Recombinant binding-domain 

of MBD2 protein was kindly provided by LumiMac Inc. (South Korea). The purified 

MBD2 protein monomer (MW = 10.7kDa) was stored at 1.3mg/ml of buffer containing 

25mM Tris (pH7.5), 500mM NaCl, 0.1% Tween 20, 0.1mM EDTA, 0.5 mM DTT and 50% 

glycerol. The MBD2 protein samples were shipped in dry ice and immediately stored at -

20˚C upon arrival. Prior to experimentation, MDB2 protein was reactivated in a solution 

containing 10mM Tris (pH7.2), 1mM MgCl2, 1mM DTT, 5% glycerol for 15 minutes at 

room temperature. This step was critical for assuring optimal MBD2 binding activity. 

Then, the reactivated MBD2 protein was incubated with methylated DNA at a 2:1 

concentration ratio for 15 minutes at room temperature, before being added to the 

experimental buffer.  

7.3.3 Single-channel recording. Single-channel recordings were performed using 

Axopatch 200B (Molecular Device Inc.), filtered with a built-in 4-pole low-pass Bessel 

Filter at 5kHz. Data were acquired at 180mV with Clampex 10.7 (Molecular Device Inc.) 

and Axon Digidata 1550B A/D converter (Molecular Device Inc.), at a sampling rate of 20 

kHz. We used Clampfit 10.7 (Molecular Device Inc.), Excel (Microsoft) and R software 

for data analysis and processing. 

7.3.4 Data analysis and visualization. Events with translocation time < 2ms or 

%I/Io < 50% were considered as either translocation of single-stranded DNA or  brief 

interaction of DNA and the pore entrance; thus, they were disregarded from data 
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analysis.237 We used ggplot2 package (R) to generate boxplots for the overall event dwell 

time and histogram of current blockage amplitude. 

7.4 Results and Discussion 

In this study, we employed three DNA samples with identical sequences but 

differences in methylation status: (1) unmethylated DNA (u100), (2) methylated DNA 

(m100), and (3) MBD2 bound methylated DNA (m100•MBD2). All DNA samples contain 

a double-stranded section (78 bps) and two overhang single-stranded ends (11 bps each). 

The specific length of the overhangs was designed to ensure that a sufficient number of 

nucleotides resided within the pore 𝛽-barrel at all times, to initiate the unzipping of DNA 

duplex upon electrical pulling force.307-311 

7.4.1 Mechanism of DNA unzipping through the nanopore. As shown in Figure 

32A, when dsDNA unzips in a nanopore it undergoes two distinct steps. The first step is 

when the ssDNA tail is caught in the nanopore and begins to translocate,319 while the 

ssDNA tail is simultaneously pulled through the bulk solution to the nanopore because of 

the DNA’s negative charge.307 As the ssDNA tail gets caught in the nanocavity, the 

dsDNA region cannot translocate through the nanopore constriction section without 

melting into single-stranded DNAs (e.g. strand dissociation).60  After the dsDNA region 

is unzipped, the two strands are physically separated (Step 2).60 

Translocation of MBD2-dsDNA complex through the nanopore is similar to that of 

unbound dsDNA, with an extra step of protein dissociation (Figure 32B). As the distance 

between base pairs of DNA is approximately 0.34nm, the total length of the DNA 

sequences would be approximately 34nm total, with single-stranded overhangs of 3.74nm 

each.  
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Figure 32. Mechanism of DNA translocation through the nanopore. (A) Translocation of 

and unbinding dsDNA occurs in two steps: (1) single-stranded tail gets captured by the 

pore and (2) complimentary strand dissociates under constantly pulling force of the 

electrophoretic field.  (B) Mechanism of m100•MBD2 DNA translocation through the 

nanopore is similar to that of u100 and m100; however, MBD2 must detach prior to duplex 

full dissociation. (C) Typical step-wise function of a translocation event, reflecting the two 

stages: (1) DNA capture and (2) strand dissociation. (D) Box-plot of the event amplitude 

at each translocation step. 

 

 

 

Since the methylated CpG is located at the 44th base from the 5’ end, the double-

stranded DNA dissociation (Step 1) must happen prior to MBD2 protein dissociation (Step 

1). Specifically, as the MBD2-methDNA complex threads through the 𝛼-hemolysin 

nanopore, the MBD2 protein gets stuck at the pore entrance for a short period, then 

transiently dissociates from the DNA strand, causing a prolonged current blockage event.  

This initial ssDNA blockage results in a Level 1 current blockage (i.e. event capture), 

which characterizes the beginning of an event.  When the first strand that has the initial 

ssDNA strand is translocated, the second strand coils in the vestibule of the nanopore.307 

This coiling results in a sharp and short upshot of the current blockage after the Level 1 



www.manaraa.com

 

117 

 

blockage.6 The current drops again as the second strand begins to translocate.314 If the 

second strand exits the nanopore, then the signal will continue to return to the baseline after 

the initial spike (Figure 32C).307  

Overall, the mechanism of dsDNA strand dissociation is governed by the DNA 

sequence (i.e. length, GC content) and by the environment that the DNA experiences (i.e. 

voltage, ionic strength, temperature).309 Since the dsDNA region cannot enter the neck, 

interactions between the dsDNA and the nanopore contribute to the unzipping.307  The 

length of the dsDNA region also affects the ease at which a strand will unzip.312 Longer 

dsDNA region associates with a more stable the DNA complex.312 This increase in stability 

changes the energy interactions of the energy field and the pore.312 The force of the energy 

field causes the dsDNA region to experience an upward shear force.313 As the dsDNA 

region unzips, the complex also experiences a traction force as the strands are pulled 

apart.313 

7.4.2 Binding of MBD2 does not change event amplitude. We examined the 

overall average current-blockage event amplitude (%I/Io) of u100, m100, and 

m100•MBD2 DNAs (as shown in Figure 33). As mentioned previously, the samples 

employed in this study had an identical sequence, but differ in 5’-mC content. Gaussian-

fitting of their current blockage information exhibited a prominent peak of %I/Io ~ 86.5 ± 

1% (Figure 33),  which were slightly shallower than that of single-stranded DNA 

translocation through the nanopore (as concluded in Chapter 6).238 

Comparing between three samples, the mean current-blockage event amplitude 

(%I/Io) increased in the order of u100 < m100 < m100•MBD2 (Table 14). Specifically, the 

mean %I/Io were approximately:  85%, 85.6%, and 86.5% for u100, m100 and 
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m100•MBD2 DNAs, respectively. Moreover, we performed an unpaired t-test and %I/Io 

of all samples was statistically significant from each other at 99% confident interval 

(adjusted p << 0.01), as shown in Figure 33. The slight difference in %I/Io of u100 and 

m100 DNAs observed herein was resulted from interaction of methylated cytosine with 

adjacent bases, as previously discussed (see Chapter 6; Conclusions).238 Addition of MBD2 

protein resulted in a 0.9% increase in the event average %I/Io (from 86.5% in m100 DNA 

to 86.5% in m100•MBD2 DNA). This change was visible during the strand dissociation 

step but not during event capture (Figure 32D). In other words, after the  m100•MBD2 

complex was captured and started unzipping, the MBD2 protein got pulled toward the pore 

entrance, partially blocked the nanopore cis opening, resulting in a slightly deeper %I/Io.  

 

 

 

 

 

Figure 33. Changes in current blockage amplitude. Distribution of the overall current 

blockage amplitude (%I/Io) of three DNA samples, including: u100 (pink), m100 (green) 

and m100•MBD2 (blue). All samples exhibited a normal distribution curve, with a 

prominent peak at approximately 85 – 87%. Student’s [STUDENTS’?] test showed 

significant change in all samples. 
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Table 14 

Summary of current blockage event amplitude (%) 

 

 
 

 

 

While each current blockage event was a step-wise function, the duration of each 

amplitude level was greatly different. In the majority of the dsDNA that successfully 

melted and translocated through the pore, strand dissociation was the rate-determining step; 

thus, consequently dominates the final value of the average event amplitude. We suspect 

that the slight decrease in value of event current blockage of dsDNA observed herein, in 

comparison to that of ssDNA, most likely  was due to technical limitations. Specifically, 

translocation of dsDNA through the nanopore occurs in two steps of capture and 

dissociation, leading to a step-wise function in current blockage event amplitude. As shown 

in Figure 32D, capture of ssDNA overhang caused a shallow blockage amplitude of 73 ± 

0.5%, while the strand dissociation step was characterized by a prominent long block at 

87.5 ± 1% (similar to ssDNA translocation). When detected by Clampfit software, the 

current blockage amplitude was automatically calculated as an average of the whole event 

amplitude, thus leading to a slight decrease in %I/Io of dsDNA translocation. 

7.4.3 Increased strand-dissociation time in methylated DNA and MBD2-bound 

DNA. Event translocation time reflects the structural stability and interaction with the pore. 

In Figure 34, we plotted the distribution of event dwell time for u100, m100 and 

m100•MBD2 DNAs in the same experimental condition. Under  a +180mV applied voltage 

and an ionic concentration of 1M – 1M NaCl (in the cis and trans chambers), the average 

Condition Mean (%) Max (%) Min (%) Median (%) Std. 

u100 84.06 92.37 75.29 84.33 3.25 

m100 84.71 94.95 75.17 85.60 3.55 

m100•MBD2 85.40 98.13 75.02 86.39 3.93 
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translocation time, ∆t, increased in the order of u100 < m100 < m100•MBD2 DNA (∆t = 

1.2, 1.7, and 2s, respectively (Table 15)). In other words, ∆t of m100 and m100•MBD2 

DNA increased approximately 1.4 and 1.6 times for m100 and m100•MBD2, respectively, 

in comparison with ∆t of u100 DNA.  

 

 

 

 

 

Figure 34. Changes in translocation time. (A) Boxplot of event dwell time distribution for 

unmethylated DNA, methylated DNA and MBD2-methylated DNA complex. Students’ 

test determined a statistically significant change in dwell time of m100•MBD2, in 

comparison to u100 DNA> (B) Bubble plot of event dwell time, associated with two stages 

in dsDNA translocation through the nanopore: (1) capture of single-stranded overhangs 

and (2) dissociation of complimentary base-pairs in double-stranded section. The majority 

of change in dwell time exhibited in the strand dissociation time, reflecting an increase in 

duplex stability in m100 and m100•MBD2 DNA. 

 

 

 

Table 15 

Summary of current blockage event dwell time (ms) 

 

 

Condition Mean Max Min Median Std. 

u100 1262.17 23077.65 1.25 153.55 3041.21 

m100 1719.08 34113.85 1.05 267.45 3678.56 

m100•MBD2 2026.84 44168.05 0.70 344.80 4198.51 
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Notably, ∆t of identical DNA sequences from the same group of samples was 

greatly varied (from ms to tens of seconds), due to the random thermal activation required 

for separation.256 The melting process of dsDNA occurs in two steps: the first is the initial 

separation to overcome the energy barrier, and the second is the unzipping of the rest of 

the strand.316 The energy barrier refers to the amount of energy required to break the 

hydrogen bonds of the dsDNA region.309 The energy that breaks the hydrogen bonds is 

fueled by the energy field within the nanopore.321 The electrons in the energy field within 

the nanopore causes the dsDNA to denature and begin to unwind.314 Sometimes, trouble 

arises during the transition from the initial metastable state to a final stable (lower-free-

energy) state. When this happens, the dsDNA can get stuck inside the nanocavity, causing 

current blockage events lasting minutes or indefinitely.315 

On the other hand, the overall increase in ∆t among different samples, as observed 

from Figure 34A, was a consequential result of increased DNA duplex stability. As 

mentioned previously, each translocation event of dsDNA consists of two steps: event 

capture and strand dissociation. Through manual analysis of the data, we found the time of 

strand capture was similar among the three samples (~250 ±70ms), while strand 

dissociation times significantly increase in m100 and m100•MBD2 DNA (as shown in 

Figure 34B). As the methylated cytosine is at the 44th base of the DNA sequence, distance 

between MBD2 protein and the 5’- or 3’- end of the DNA was sufficiently long (~ 15nm) 

to prevent the binding of MBD2 from affecting the capture of ssDNA overhangs.  

 This explains the reason why capture time remained similar between three samples, 

while increases in ∆t of the strand dissociation step indicated enhanced stability of dsDNA 

structure in m100 and m100•MBD2. Specifically, the strand dissociation time of u100, 
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m100 and m100•MBD2 were 0.87, 1.36 and 1.75s, respectively. In other words, compared 

to u100 DNA, there were 1.6 and 2 times increase in strand dissociation time in m100 and 

m100•MBD2, respectively. Using an unpaired t-test, we determined that there was 

statistically significant change in ∆t of m100•MBD2 in comparison with u100 DNA 

(adjusted p value = 0.018). The main contributing factor to enhanced duplex stability was 

the presence of methylated cytosine on the 44th base. Previous studies showed that DNA 

templates with different content of cytosine methylation have different melting 

temperatures.18 DNA methylation increases the DNA duplex stability, reflecting through 

both its thermal and mechanical properties. In the context of nanopore experiments, 

dsDNA translocating through the pore went through a force-induced strand separation, 

which is greatly affected by the strand mechanical stability. 

In m100•MBD2 sample, both the presence of methylated cytosine and MBD2 

contributed to the prolonged strand dissociation time. As mentioned earlier, in order for 

the m100•MBD2 complex to translocate through the pore, MBD2 protein must first 

dissociate from dsDNA. A previous study reported MBD2 to have a dissociation constant 

(KD) of 2.1 𝝻M.316 The structure of MBD2 consists of a long finger-like projection that is 

composed of three strands of 𝛃 sheets.316 When binding to DNA, MBD2 interacts with 

approximately 10-11 nucleotide base pairs.316-317 Its finger-like projection extends into 

major grooves of the DNA where it contacts the CpG sequence. In particular, the region 

contacting the DNA is well structured and thus creates a stable connection.316 This stable 

bond is created by interactions between specific amino acids that make up the MBD and 

bases of the CpG sequence. Specifically, Arginine (R), Tyrosine (Y), and Aspartic Acid 

(D) residues make specific base interactions with the CpG sequence that cause a flat 
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orientation.316-318 The Arginine forms hydrogen bonds with symmetrically opposed 

Guanine bases. This allows its side chains to pack against neighboring methylated cytosine 

groups. This dense packing causes the Arginine side chains to form van der Waals contacts 

with the DNA, which further stabilizes the bond.316-317 Finally, the Tyrosine and Aspartic 

Acid also form hydrogen bonds with the surrounding complex, which further strengthens 

the connection and locks MBD2 into place.316-317 As dsDNA is pulled through the 

nanopore, MBD2 protein is anchored at the pore entrance until there is sufficient energy to 

break its connection to the DNA; thus, prolonging the event dwell time.   

7.4.4 MBD2 enhance methylation detection accuracy. Having determined the 

changes in amplitude and stability of the three samples (u100, m100, and m100•MBD2), 

we tested the efficiency of using machine learning algorithms to distinguish methylated 

from unmethylated DNAs. Specifically, we performed comparative analysis using the 

same set of five different algorithms in duplicate on: (1) u100 and m100 DNA and (2) u100 

and m100•MBD2 DNA. The final goal was to determine whether employing MBD2 

protein enhanced the nanopore’s ability to detect methylated cytosine on dsDNA.  

The five algorithms we used included: K-Nearest Neighbor (KNN), Logistic 

Regression (LR), Linear Discrimination Analysis (LDA), Quadratic Discrimination 

Analysis (QDA), and Random Forest (RF). In each DNA sample group, we randomly 

selected 500 current-blockage events, then used 80% of the dataset for model training and 

the remaining 20% for validation purposes. Two features of the current-blockage event, ∆t 

and %I/Io, were used as input for the models.  

To evaluate the overall performance of the models on classifying u100 from m100 

DNA and from m100•MBD2 DNA, we constructed two vertical box-and-whisker plots, as 
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shown in Figure 35A – B, respectively. In this plot, the box and whiskers show the median 

of ARUOC as a dot, and the interquartile range of each distribution as a box around the 

median. The x-axis represents the area under the Receiver Operating Characteristics curve 

(AUROC). The closer the AUROC value is to 1, the better the model at is correct 

classification. Generally, a better model would have higher median AUROC and smaller 

range between minimum and maximum AUROC. For a binary system, the threshold is 

AUROC is equal to 0.5 (shown as a red line) and maximum AUROC value is equal to 1. 

 

 

 

 

Figure 35. Machine learning classification of methylated and unmethylated DNA.  Five 

machine learning models were employed to classify u100 from m100 or m100•MBD2. The 

models include: K-nearest neighbor (KNN), Random forest (RF), Logistic regression (LG), 

Linear discrimination analysis (LDA), and Quadratic discrimination analysis (QDA). Box-

and-whisker plots represent distribution of area under the receiver operating characteristic 

curve (AUROC). Model’s performance was ranked based on increasing median AUROC 

value (shown at the dot). 

 

 

 

Classification models for u100 and m100 DNA yielded relatively poor results, with 

the majority of the models having a median ARUOC ≤ 0.65. The QDA classifier had the 

best performance with a median AUROC of 0.76. The classifier’s optimal sensitivity and 

specificity were 78% and 54%, respectively. On the other hand, when applying the 



www.manaraa.com

 

125 

 

classifying models on u100 and m100•MBD2 dataset, all classifiers returned a median 

AUROC value ≥ 0.75 (comparing to 0.65 for the u100 – m100 dataset).  

KNN model had the highest median AUROC of 0.83, with the optimal sensitivity 

and specificity of 88% and 86%, respectively.  It is worth noting that according to the 

decision tree (Figure 36 and Figure 37), the current-blockage event amplitude outweighed 

dwell time and played the most important role in classification of u100 from m100 and 

m100•MBD2 DNA.  

Altogether, our study showed that the addition of MBD2 protein significantly 

improved the probability of correctly distinguishing unmethylated DNA from methylated 

DNA. A limitation in our prediction model comes from having nonhomogeneous control 

samples, specifically m100•MBD2 population. When working with dynamic experimental 

conditions, such as those investigated here, the process of MBD2 protein 

binding/unbinding to dsDNA happens constantly; thus, there is always a mixture of both 

bound and unbound dsDNA in the m100•MBD2 sample. This creates bias in the training 

set for the machine learning models and hindered the model performance.  
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Figure 36. Decision tree for classification of u100 DNA from m100 DNA. 
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Figure 37. Decision tree for classification of u100 DNA from m100•MBD2 DNA. 

 

 

 

7.5 Conclusions 

In this work, we showed that the α-hemolysin nanopore can be used as a biosensor 

for detecting the methylation status of dsDNA. Since a level amount of methylation directly 

affects the DNA’s stability and its corresponding translocation time, it is possible to build 

a panel of dsDNA translocation times in correlation with the sequence length, GC content, 

and methylation level. Previous studies have shown that methylation of a certain level (i.e. 

40% CpG is methylated in CDKN2B gene) can result in complete gene silencing, regardless 

of the CpG methylation pattern.22 While it will remain challenging to understand the exact 

number of methylation sites on a random DNA fragment, it is feasible to determine whether 

the sequence is hypermethylated or under methylated (compared to a threshold methylation 

percentage), using nanopore aided with machine learning prediction algorithms.  
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Chapter 8 

 

Gone Fragments: Capturing Circulating-Tumor DNA 

 

8.1 Abstract 

Compared to traditional tissue biopsy methods, the use of plasma or urine samples 

(the so-called “liquid biopsy”) is less invasive, improves the patient’s quality of life, while 

offering a more reliable and frequent detection of cancer signal over time with longitudinal 

sampling. Unfortunately, current methods to analyze liquid biopsy samples are time-

consuming, expensive and biased towards a specific fraction of the genome or mutations. 

In this chapter, we describe two novel sample-preparation strategies that enable sequencing 

of long cfDNA fragments, which are often missed by the current Next-generation 

sequencing (NGS) platforms (i.e. Short-read Illumina sequencers). These techniques, 

which employed rolling-circle amplification (RCA) or blunt-end ligation, transform 

cfDNA fragments into long strands that are easily captured by the nanopore sequencer. The 

proposed techniques can reduce the time required to process and analyze liquid biopsy 

samples (from weeks currently to less than 2 days). This study was carried out under the 

supervision of Dr. Florent Mouliere (Amsterdam UMC) and in collaboration with the group 

from Dr. Jeroen de Ridder (Utrecht UMC). 

8.2 Introduction 

Liquid biopsy is the study of tumor material collected in a minimally invasive 

manner through sampling of blood, urine and other bodily fluids.319  Presence of cell-free 

DNA (cfDNA) in human blood was first described by Mandel and Metais in 1948. 

Abnormally high concentration of cfDNA in cancer patients was first observed in 1977.320 

In 1989, Stroun et al. reported that a fraction of cfDNA from the plasma of cancer patients 
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originated from tumor cells, giving rise to the term ‘circulating tumor DNA’ (ctDNA).321-

322  

 Among the potential signals of cancer in the bloodstream,323-325 ctDNA has 

strongly emerged as a major tool and biomarker for precision medicine in the past 

decade.326-328 ctDNA is tumor-derived, fragmented DNA found in bodily fluids. Though 

the existence of ctDNA is now widely accepted, the mechanisms by which ctDNA enter 

the bloodstream are still unclear.329 There are  two main proposed mechanisms for cfDNA 

release: (1) apoptosis/necrosis, or (2) active secretion.330-332 CfDNA, which was first found 

in the circulation, has been detected in various bodily fluids, including urine, saliva, pleural 

fluid, and cerebrospinal fluid.333-338 Epigenetic and methylation analysis revealed that in 

healthy individuals and cancer patients, the majority of cfDNA originates from 

hematopoietic cells.339-340 These cells have a modal size of approximately 166bps, which 

corresponds to the length of DNA wrapped around a nucleosome (~147bp) plus linker 

DNA.319 Demonstration by PCR and sequencing revealed that ctDNA molecules are 

normally shorter than non-mutant cfDNA, with an average size of 134bp – 144bp.341 

However, the cause of shortening in ctDNA fragment is unclear.319 

As ctDNA exhibits both the genetic and epigenetic alterations from their cancer 

cell origin,339, 342-343 and can reflect tumor type and stage, it has therefore been hypothesized 

as a prognostic and predictive marker in cancer treatment selection326, 344 and detection.345 

Specifically, various types of genomic and epigenomic DNA alterations have been 

observed in cfDNA, including for example mutation, DNA hypermethylation, copy 

number variation, microsatellites instability, rearrangements and losses of 

heterozygosity.346 It is more beneficial to detect cancer earlier when the disease is easier to 
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treat. However, the potential use of ctDNA for detecting early-stage cancer still presents 

great challenges. For example, ctDNA amount in total cfDNA is usually very low; thus, 

demanding techniques with sensitivity for detecting low tumor fraction and high technical 

and biological background signal. In healthy individuals, cfDNA concentration tends to 

range between 1 and 10 ng per ml in plasma (Figure 38).347-348 In cancer patients, the 

concentration of cfDNA in plasma or serum can increase over 10-fold (compared to healthy 

individuals), with an average of 180 ng per ml.349 The exact amount of ctDNA released 

into the blood stream varies depending on the stage and type of cancer.350-351 While the 

concentration of ctDNA content can be much higher in late-stage cancer patients,350, 352-353 

they usually make up less than 10% of total cfDNA.354-356 Thus, it is still challenging to 

detect and diagnose tumor-related cancers with a good specificity and sensitivity, reducing 

the clinical implementation of such methods.  

 

 

 

 

Figure 38. Changes in cfDNA concentration in plasma collected from three non-small cell 

lung cancer patients. Samples were collected multiple times for up to three months 

(longitudinal sampling).  (A) Concentration of cfDNA ranges between 0 – 10ng/µL 

(Qubit). (B) Changes in cfDNA overtime and treatment, as normalized by the starting 

cfDNA concentration at the first collection time (t = 0). A high cfDNA concentration could 

be an indication for high ctDNA in the sample, though more tests are usually followed to 

confirm the exact concentration of ctDNA. 
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Currently, monitoring disease burden is performed using imaging or molecular 

methods, which are associated with radiation exposure or logistical burden.319, 357 

Conventional methods for sampling solid tumor, such as needle biopsies, are subjected to 

high procedure complication rate (1 out of 6 cases in some cancer types),358 and sampling 

biases that arise from tumor genetic heterogeneity.359-361  Compared to the traditional 

surgical biopsy, liquid biopsy is less invasive, improving the patient’s quality of life, while 

offering a more reliable detection of tumors and mutations over time with longitudinal 

sampling. Since the half-life of cfDNA is between 16 minutes to 2.5 hours in circulation,362-

364 analysis of ctDNA can be considered as ‘real-time’ dynamic snapshot of disease 

burden.319 

Currently, the majority of liquid biopsy samples are analyzed with PCR methods 

or Next Generation Sequencing systems (e.g. Illumina, Roche, or Ion Torrent), whose 

optimal DNA  read length range between 75-500bp (i.e. short-read sequencing). As these 

systems sequence through enzymatic reaction, their efficiency significantly reduces when 

the DNA fragment is longer than 500bp.365  While Next-generation sequencing can be 

highly accurate, this platform may not practical in clinic, due to extensive processing time 

and the restriction imposed by the gene panel used. Another common method for cfDNA 

analysis is digital droplet PCR, which has been proven to be a fast and efficient tool for 

studying a single locus (a fixed position on a chromosome). However, when the targeted 

gene does not have a hotspot (i.e. TP53), it is challenging to design and employ the correct 

set of probes, even more if the location of point mutation is unknown.  

However, there is a population of cfDNA fragments that is currently missing from 

the picture: long cfDNA fragments (Figure 39). Early works using electrophoresis on low-



www.manaraa.com

 

132 

 

percentage agarose gel showed a variation in size of cfDNA, ranging between 0.18 – 21 

kbs.349, 366 Recently, long cfDNA fragments (>1000bp) have also been identified in healthy 

individuals using long-read sequencing techniques.367 These fragments might be released 

to the circulation in association with exosomes,368-369 or by tumor cells via necrosis.370 A 

portion of long cfDNA fragment could come from fusion genes or oncogene-carrying 

extrachromosomal DNA (ecDNA, 1-3Mbs long),371 which is a potent mechanism leading 

up very high copy number of oncogenes.372 Unfortunately, these long cfDNA fragments 

are usually poorly recovered due to bias in DNA extraction methods,373-374 sequencing 

library preparation,375 and limitation in the enzymatic reaction of the current short-read 

Illumina sequencing platforms.319   

Nanopore sequencing offers a shorter processing time, lower capital cost, and high 

flexibility. At the moment, MinION (Oxford Nanopore) is the most well-known nanopore 

sequencer that is commercially available and has been successfully employed in multiple 

fields, including oncology research, agriculture, and outbreak surveillance (i.e.CoVid19, 

Ebola, Zika virus outbreaks). Unlike other sequencing platforms, nanopore uses electrical 

signal disruption (as explained in previous chapters), instead of synthesis. Thus, it does not 

suffer from enzymatic reaction exhaustion when sequencing DNA fragments > 500bp (e.g. 

long-read sequencing). While nanopore can effectively capture long DNA fragments, it 

still suffers from (1) low base-calling accuracy fragments shorter than 1kbp,304and  (2) high 

amount of DNA input required.  

Compared to short-read sequencing platform like Illumina chemistry, read-length 

of nanopore is the same as the length of the native DNA fragment in cell nucleus. This 

offers a great advantage in analyzing cfDNA size distribution of the whole cfDNA size-
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range, fragmentation, and also gene fusion. While the Oxford Nanopore is attractive with 

its ability to directly sequence DNA without PCR amplification, this is not yet an option 

when working with cfDNA. Specifically, most of nanopore library preparation kit requires 

at least 500ng - 1 µg gDNA input (or 100fmol of shorter DNA), which is approximately 

100 times higher than the normal input for other NGS library preparation. As the average 

concentration of cfDNA is 1 – 10ng/ ml in plasma, whole genome amplification is a 

necessity to increase the starting amount of material for library preparation.  

 

 

 

 

Figure 39. Presence of long cfDNA fragments. Bioanalyzer results of cfDNA extracted 

from (A-D) cancer cell cultures media, (E) urine sample, and (F) plasma sample of cancer 

patients. Preliminary results showed that the size distribution and concentration of cfDNA 

greatly varied among samples and sample types. Besides the characteristic peaks of cfDNA 

(~166bp), multiple samples exhibited a presence of long cfDNA fragments (1-3kbs), which 

are often missed in sequencing a downstream analysis. 
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Thus, it is essential to develop a new protocol for nanopore sequencing that could 

effectively capture both short and long fragments of cfDNA. As long cfDNA fragments 

(e.g. fusions, extrachromosomal DNA) are currently missed by standard Illumina 

sequencing, the nanopore could have here a conceptual advantage for analyzing them.  

To tackle this issue, we developed two new protocols to perform the preprocessing 

cfDNA for nanopore sequencing, using: (1) rolling-circle amplification to create long 

fragments with tandem repeats, and (2) blunt-end ligation to create DNA concatemers. 

Specifically, we will discuss technology development and evaluate preliminary results of 

using these two techniques on plasma samples from non-small cell lung cancer patients.  

8.3 Materials and Methods 

8.3.1 Cell culture and sampling. 143B Human metastatic osteosarcoma cells were 

cultured in IMDM +/+ (+10% FBS + 1% penicillin/streptomycin). Cells were plated at 

30% confluency and allowed to attached for 4hr. Once attached, media was changed to 

4mL serum free media. Cells were serum starved for 24hr to synchronize. First collection 

was done (0h) at the end of serum starvation, and processed. After that, media was changed 

to 4mL regular growth media and media was collected in duplicate at 4h, 24h, 48h and 72h 

from the same flask. At 72h, all cells were dead due to lack of space and nutrient and we 

excluded this timepoint from the study. 

8.3.2 Cell sample processing. Upon media collection, duplicated sample was 

divided into two groups (A and B), then immediately processed to remove supernatant. 

Specifically, samples in group A were centrifugated at 500 g for 5 minutes (removal of 

cells), then 2000 g for 5 minutes (removal of large apoptotic bodies). Samples in group B 
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were processed similar to group A, but had a third centrifugation step at 10,000g for 10 

minutes (removal of micro-vesicles). All samples were then stored at -20˚C.  

8.3.3 Extraction of cfDNA from cell culture. Samples were thawed at room 

temperature for 1 hour, then quickly vortexed and spinned down. For each sample, cfDNA 

was extracted from 500 µL cell media using QIAamp Blood MiniKit (following 

manufacturer’s instruction). Sample was eluted in 200 µL nuclease-free water, and 

concentrated to 50µL using SpeedVac at 37˚C. Finally, all samples stored at -20˚C until 

quantification. 

8.3.4 Extraction of cfDNA from plasma. Blood samples of non-small cell lung 

cancer patients were collected aseptically and processed using the standard operating 

procedure validated by the Liquid Biopsy Center, Cancer Center Amsterdam (the 

Netherlands). For each sample, cfDNA was extracted from 3 mL plasma using 

QIASymphony automatic extraction system and magnetic beads chemistry, followed by 

elution in 90 µL nuclease-free water and stored at -20˚C. Concentration of cfDNA 

extracted checked with Qubit according to the manufacturer’s instructions.  

8.3.5 Agilent Bioanalyzer 2100. Size distribution analysis of cfDNA were 

performed by capillary electrophoresis using Agilent 2100 Bioanalyzer (Santa Clara, CA), 

in combination with a High-sensitivity DNA Chip (Agilent Technologies). Agilent 2100 

Bioanalyzer is a microfluidic-based platform for sizing and quantification of DNA and 

RNA, using fluorescent dye molecules. The assay was performed according to 

manufacturer’s specific instruction for High-sensitivity DNA chip. After separated 

analogously to CE, nucleic acids are normalized for size to a ladder and two DNA markers, 
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which are then represented graphically as a virtual band. Size and concentration of each 

band are automatically calculated by 2100 Expert Software (B.02.08.SI648, Agilent).  

8.3.6 Gel electrophoresis. 2% agarose gel (w/v) was prepared by dissolving 1g 

agarose in 50mL 1X Tris-Borate-EDTA (TBE) buffer, and 2.5 uL Ethidium Bromine. Gel 

was casted and settled at room temperature for at least 30 minutes prior to experiment. 

FastRuler Low Range DNA ladder (Thermo Scientific) and O’GeneRuler 1kb Plus DNA 

ladder (Thermo Scientific) were used as references. All electrophoresis experiments were 

performed at 100mV for 15-45 minutes. 

8.4 Methods Development 

8.4.1 Detection of long cfDNA in cell culture. Release of cfDNA was 

characterized over time (Figure 40). We divided the collected cell culture media into two 

group of samples— group A and group B (see Materials and Methods for detailed 

information on the difference in sample processing). Comparing between the two groups, 

there was no significant change in peaks positions at any given time point. Specifically, at 

the end of serum starvation, there was a minimal amount of long cfDNA fragments (~1-

3kbps) observed (collection time t = 0, Figure 40A and E).  After growth medium renewal, 

the amount of cfDNA increased incrementally, notably peaked after 24h and continued to 

increase at 48h. This could be explained by the increasing number of cells in the culture 

over time. In addition, previous reports reported that more cfDNA was released also per 

cell.376-378 

At t = 24h and 48h, we observed an expected peak at 166bp and ladder pattern, 

which could indicates an apoptotic origin.379-380 The pattern was reminiscent to that 

obtained by apoptotic cells was also observed in both sample groups at 24h and 48h. 
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However, besides a peak at ~160 bps, there was a much more prominent peak near ~2kbps 

that consistently appeared in all samples, except for at 4h. Previous studies on the same 

cell line (143B) showed that these long cfDNA fragments were neither from apoptotic or 

necrotic origin.380   

 

 

 

 

 

Figure 40. Short and long cfDNA fragments in cell culture overtime. Bioanalyzer results 

of cfDNA extracted from 143B osteosarcoma cells culture media, collected at 0h, 4h, 24h, 

and 72h. (A-D) samples in groups A was centrifuged at 0.5g x 5min and 2g x 5min. (E-H) 

samples in group B was centrifuged at 0.5g x 5min, 2g x 5min, and 10g x 10min. Presence 

of long cfDNA fragments (1-3kbs) from both groups indicated that they may not come 

from dying cells, apoptotic bodies, or microvesicles. 
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Samples in both groups were collected at the same time, but processed slightly 

differently (Materials and Methods). Because of the difference in centrifugations, samples 

in group A contained intermediate-size extracellular vesicles (e.g. microvesicles, 100-

1000nm), while those in group B only contained smaller extracellular vesicles (e.g. 

exosomes, 30-100 nm). Thus, it was interesting that concentrations of long fragments 

(~2kbps) at 24h and 48h are higher in group B than in group A. We suspected that these 

long fragments might be DNA bound to surfaces of extracellular vesicles that were released 

with centrifugation.381 Currently, it is still challenging to access these long fragments using 

short-read sequencing platforms.  

8.4.2 Methods to capture both short and long cfDNA fragments. Herein, we 

describe two sample-preparation strategies that convert cfDNA into long fragments that 

can be sequenced on the nanopore systems. The main goal of both protocols was to produce 

> 500ng of long cfDNA fragments (>1000bps), through two main steps: (a) whole-genome 

amplification and (b) long-fragment synthesis.   

8.4.2.1 Method 1: Rolling-circle amplification. The first sample-preparation 

strategy enables capturing and sequencing of both short and long cfDNA fragments 

through circularization, followed by whole-genome amplification of cfDNA using rolling-

circle amplification technique. Rolling-circle amplification is an isothermal enzymatic 

process where short, circularized DNA or RNA is quickly amplified to form a long single-

stranded fragment with multiple tandem repeats.382 As the RCA products can be tailor-

designed through manipulation of the original circular template, this technology has been 

widely utilized for biotechnology, drug delivery, diagnosis, and many other techniques.382 

For each sample, approximately 40-50ng extracted cfDNA from the plasma of lung cancer 
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patients were first end-repaired to create blunt end fragments, then cleaned up with a 

commercial reaction cleanup kit. After that, the blunt-end fragments were a phosphorylated 

at the 5’ end. This population will be referred to as the insert (I). At the end of each step, 

the sample was cleaned up using a column-based reaction clean-up kit in order to remove 

excess enzymes and waste products. After the second clean up, we used Qubit to quantify 

the concentration of end-repaired DNA samples. The Qubit results indicated that there were 

approximately 4.5ng of end-repaired DNA product, reflecting approximatively a 90% loss 

of DNA input.  

As nanopore sequencing requires at least 500ng -1µg of input DNA (or 50-100 fmol 

of shorter DNA fragments), it was essential to perform a whole genome amplification. In 

this protocol, the circular template for amplification consisted of two components: the 

cfDNA insert (I) and the barcoded backbone sequence (BB). The BB sequence (a 250bp 

blunt-end, synthetic DNA fragment) was designed to contain a phi29 DNA polymerase 

binding domain, a restriction enzyme cutting site, DNA barcode, and a CRISPR cutting 

domain. Phi29 DNA polymerase was chosen for its  exceptional processivity and strand 

displacement ability.383   

Note that in order for ligation to happen, at least one fragment (either I or BB) needs 

to be phosphorylated. Backbone and insert cfDNA were mixed and incubated together for 

5.6 hr, allowing ligation and circularization. The BB was unphosphorylated, in order to 

minimize the amount of backbone-backbone ligation (e.g. containing no cfDNA). After 

ligation, there were four possible products: circularized BB:I, circularized BB:BB, 

circularized I:I, and linear fragments. As the circularized BB:BB population contained no 

biological information of the tested sample, we discarded this group to reduce waste in 
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sequencing. In order to do so, backbone DNA was designed so that when two BB:BB 

ligated, they would form a sequence recognized and cut by CRISPR. This step prevented 

BB:BB products from being amplified by phi29 and sequenced. 

 

 

 

 
 

Figure 41. Flow chart of sequencing using a guided system. (A) Each cfDNA fragment is 

end-repaired and attached to a backbone, then amplified with rolling circle amplification. 

This procedure takes approximately two days, yielding an end product containing long 

DNA fragments,  each of which contains tandem repeats of the backbone and one insert 

cfDNA. After that, the sample is ready for nanopore library preparation and sequencing 

(24-48hrs). (B) Gel image of DNA after RCA reaction. (C) Preliminary results of all 

sequencing reads (Patient 1) from a Flongle flow cell after 48 hours. There were 

approximately 70,000 reads in total. (D) Histogram of the insert (cfDNA) length 

distribution. 
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The results from the gel electrophoresis (Figure 41B) indicated that for both 

samples (Patient 1 and 2), RCA reaction creates DNA fragments of over 20kbps 

(undigested). Upon digestion with restricted enzyme, digested samples exhibited three 

distinct bands at 250, 400, and 20kbps+. The first two bands corresponded to BB:BB and 

BB:I fragments, respectively. Long fragments that remained after restriction enzyme 

digestion could result from inefficient digestion, or simply because they did not contain a 

backbone sequence (e.g. multiple insert cfDNA ligated together).  

Next, RCA primers were annealed to the circular template. RCA reaction was 

carried out with 12h incubation (overnight) at 30˚C, then heat inactivated at 60˚C for 10 

minutes. RCA reaction yielded > 100µg final product, providing a sufficient amount of 

DNA for quality control and multiple sequencing runs. After a final clean up with 

Dynabeads, the RCA products were ready for library preparation using 1D Ligation Kit 

(Oxford Nanopore Technology) and sequencing.  

To evaluate the efficiency of the technique, we performed whole-genome 

sequencing on an Oxford Flongle using the RCA product from Patient 1. Compared to the 

MinION’s traditional flowcell, a Flongle only has 126 channels, instead of 512; thus, the 

output yield is also significantly reduced. However, as the cost per sample is low 

(approximately $200), it is suitable for smaller experiments, such as preliminary testing 

and quality check. Thus, we first sequenced the RCA product from Patient 1 sample on a 

Flongle flow cell. A 48 hr run yielded approximately 70,000 reads, each of which contained 

information from a unique fragment post-RCA. Figure 41C shows that about 10% of the 

sequenced fragments had no insert (B:B). Only one third of all the reads (blue) had the 

expected combination (BB:I, with I > 50bps), whereas the other one third (green) contained 
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no backbone (I:I). The rest of the reads (gray) contained extremely short inserts (BB:I, with 

I < 50bps) and were discarded from analysis. The number of repeats indicated how many 

tandem repeats a fragment had. As RCA is an enzymatic reaction, the number of tandem 

repeats could not be precisely controlled.  

We selected reads with more than five tandem repeats (approximately 10,000 of the 

70,000 total reads) to examine the distribution of cfDNA fragment length (Figure 41D).  

As can be seen, the histogram is left-skewed, with a prominent peak near 166 bps, similar 

to read length distribution obtained from Illumina sequencing (data not shown). However, 

there is a long right tail representing cfDNA fragments of up to 500bps. Also, it is important 

to note that Figure 41D only reflects 10% of the total sequencing data. 

At the moment, we are working on our bioinformatic pipeline to include RCA 

fragments that only contained inserts (I:I). Since the backbone sequence was 250bp, the 

optimal length of insert DNA ranged between 90 – 160 bp. While the system could capture 

insert fragments outside of the optimal range (as shown in Figure 41D), its efficiency had 

not been determined. Thus, we expected the fragment size distribution of fragments 

without BB would be quite different from the one shown in Figure 41D. As preliminary 

data obtained from Flongle flow cell showed promising results of capturing long cfDNA 

fragments, we multiplexed and sequenced RCA products of both patients 1 and 2 using a 

PromethION flow cell. While the cost of running a PromethION flow cell is about 10 times 

higher than a Flongle, the actual cost per Gb of data is much lower, due to higher output 

and ability of multiplexing. 

8.4.2.2 Method 2: DNA Concatenation. The second method of sample-preparation 

produces a long cfDNA concatemers through a straightforward procedure of whole-
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genome amplification followed by ligation (Figure 42A). First, we used a commercially 

available NGS library preparation kit to perform whole-genome amplification of extracted 

cfDNA (Plasma-Seq, Takara). For this reaction, up to 10 µL of isolated cfDNA (e.g. 1-

10ng total) were used for reaction input. Briefly, isolated cfDNA was first end-repaired, 

then blunt-end ligated to NGS sequencing adaptors (i.e. library synthesis). Sequencing 

indexes were then added through high-fidelity amplification using PCR (i.e. library 

amplification). After the addition of sequencing adaptors and indexes to the two ends, 

length of cfDNA fragments increased by 150bps (length of adapters + indexes).  Finally, 

we used magnetic beads to clean up the post PCR product. This process of NGS library 

preparation took approximately 3 hours, yielding 100-400ng DNA output.  

Then, we performed phosphorylated the NGS library for 30 minutes at room 

temperature, allowing blunt-end ligation in the next step. Long DNA concatemers were 

created by adding NEB Blunt-end ligation mixture to the sample and incubated at room 

temperature for four hours, to maximize the amount and length of DNA concatemers. 

Finally, we cleaned up the reaction and eluted final product in nuclease-free water. To 

check for concatemers quantity and size distribution after the reaction, we used Qubit and 

a DNA high sensitivity chip with Bioanalyzer Agilent 2100, respectively. 

The final clean up step was necessary to remove T4 ligase enzyme and any reaction 

chemicals that could potentially interfere with sequencing. During the development of this 

protocol, we tested both column-based and gel-based purification methods.  The latter one 

was quickly ruled out due to low recovery (only up to 80%) and long processing time (over 

20 minutes). As our target was whole-genome sequencing, rather than a size-specific 

fragment, column-based purification was referred for a faster procedure and higher 
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recovery. It is important to note that the DNA size selection range of the selected column 

should be carefully considered, in order to maximize recovery of long fragments while 

efficiently removing T4 ligase enzymes. In this protocol, we used NucleoSpin Gel and PCR 

Clean up kit (Takara Bio), which allowed recovery of fragments between 50 – 20,000bps 

(within 10 minutes).    

 

 

 

 

Figure 42. Sample-preparation method: Concatenation. (A) Flow chart of sequencing using 

DNA concatenation. Sample containing extract cfDNA undergoes the standard Next-

generation sequencing library preparation, followed by end-repair and blunt-end ligation 

to create long DNA fragments. The procedure takes approximately one day. (B-E) 

Bioanalyzer traces of Patients 1 and 2 samples after step 1 (NGS library preparation) and 

step 2 (blunt-end ligation / concatenation). Disappearance of the prominent peaks, and 

upward-shifting baseline in the second step indicated successful formation of long DNA 

fragments. 
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Overall, this second strategy of sample-preparation takes approximately 8 hours 

and yield between 100-400ng of DNA that can be directly used for ONT 1D ligation library 

preparation and nanopore sequencing. The final amount of concatemer obtained strongly 

depends on the output of whole-genome amplification with PCR.  

We applied this protocol to prepare samples from lung cancer Patient 1 and 2 for 

nanopore sequencing. Comparing the bioanalyzer trace at each step (isolated cfDNA – after 

library amplification – after DNA concatenation), we observed a clear shift in fragment 

size distribution (Figure 42B – G).  After DNA concatenation (Figure 42D and G), the 

prominent peaks that previously showed Figure 42B-C and E-F disappeared, replaced by 

multiple smaller peaks that stretched passed the end marker (10380 bp). 

These results indicated successful ligation and formation of DNA concatemers with 

random length. Since ONT 1D ligation library preparation kit requires at least 500ng – 1µg 

DNA input per sequencing run, we plan to pool these two samples (from Patient 1 and 2) 

together in  one nanopore flow cell. As these two samples contained two different NGS 

index combinations, it is possible to sequence them as is, without a second step of 

multiplexing using ONT barcode. Currently, a new bioinformatic pipeline is under 

development to analyze the sequencing results of DNA concatemers prepared using this 

second strategy. As each DNA concatemers consist of several individual cfDNA fragments 

that are separated to each other by a duplicate pair of adaptor and index, we need this 

bioinformatic tool to: (1) divide one concatenated strand into its component fragments, (2) 

trim the adaptor and index at 3’ and 5’ end of each fragment, (3) align the fragments to a 

reference human genome, and (4) perform downstream analysis (i.e. copy number 

variation, SNP, fragmentation, methylation and bacterial DNA.).  
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Table 16 

 

Comparison between sequencing methods   

 

 
* Note:  

1 About 90% of cfDNA input was lost before ligation of cfDNA and backbone, 

due to reaction cleanups and fragment blunting.   

2 Amount of DNA output after whole-genome amplification. 

3 Run time depends on the sequencer model.  

 

 

 

8.5 Results and Discussion 

So far, we have shown evidences of long cfDNA fragments, and described in 

detailed two recently developed strategies for sample-preparation before nanopore 

sequencing. These protocols enabled capture of both short and long cfDNA fragments. In 

Table 16, we give a brief comparison between the two strategies and Illumina sequencing. 

These two protocols, while having the same end goal, had different wet lab approaches that 

brought in unique advantages and disadvantages. Specifically:   

8.5.1 Method 1: Rolling-circle amplification. Summary:  

(1) High accuracy: End product consisted of long fragments with tandem repeats, 

allowing a highly accurate sequencing result that could be used for SNP detection 

(i.e. mutation).  

 Reference:  

Illumina (NGS) 

Method 1:  

RCA 

Method 2: 

Concatenation 

Amount cfDNA input < 10 ng 40 ng1 < 10 ng 

Amount DNA output2 100 – 500 ng  > 100 µg 100 – 500 ng 
Sample preparation time 3 – 5 hours ~ 24 hours 8 – 10 hours 

Sequencing time 24 – 80 hours3 24 – 48 hours 24 – 48 hours 

Wait time ~ 3 weeks -  -  

Read length Short (< 500 bps) Fragment length Fragment length 
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(2) High amount of output: RCA reaction yielded over 100 µg DNA, which exceeds 

the input requirement of nanopore sequencing; thus,  allowing quality controls and 

multiple testing.  

(3) Fragment length: ability to capture long-fragments that previously missed by short-

read platforms, as indicated by preliminary sequencing with the Flongle flow cell.  

(4) Long processing time: Sample preparation time took 24 hr total. However, there 

was a  long waiting period between steps, and the process actually took 2-3 working 

days, which is not practical in clinics.  

(5) High amount of isolated cfDNA input: depending on the concentration of cfDNA, 

4 – 40mL of plasma is needed, in order to obtain 40-50ng cfDNA input per sample. 

Moreover, as 90% of the DNA input was lost before RCA reaction, the diversity of 

the RCA product was significantly reduced. 

8.5.2 Method 2: DNA concatenation. Summary:  

(1) Simpler and shorter processing time: sample preparation plus ONT library 

preparation takes approximately 8 hours. Thus, DNA sequencing can be started 

within the same day.    

(2) Adaptable procedure from short-read technology: since the first half of this protocol 

used a common NGS library preparation method, this protocol is highly convenient 

for laboratories that currently rely on short-read platforms, but would like to try out 

long-read sequencing. Specifically,  the sample can be divided for sequencing with 

both short-read platform (i.e. Illumina) and long-read platform (i.e. Nanopore).  
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(3) Low DNA output: as nanopore sequencing requires at least 50-100fmol (or 500ng 

– 1µg) of DNA input, at least two or more samples will have to be multiplexed for 

a sequencing run.  

(4) Unavailable bioinformatic pipeline: This protocol is a combination of both NGS 

and nanopore sequencing, thus it requires a new, adapted pipeline. We estimate that 

it will take approximately 1-3 months to develop and employ this new 

bioinformatic pipeline.  

8.6 Conclusions 

Up-to-date, long fragments of cfDNA are still missing from the analysis, due to 

bias in sample preparation and sequencing limitations.326 Nanopore technology can be a 

potential tool to retrieve these missing fragments, thanks to its ability to perform long-read 

sequencing. However, sequencing ctDNA with nanopore sequencer is still challenging, due 

to the high input requirements and low base-calling accuracy with fragments shorter than 

1kbps. In this study, we showed two novel sample-preparation methods that can capture 

both short and long cfDNA fragments for sequencing with high accuracy using nanopore 

technology. At the moment, these methods are still under development and optimization to 

lower the cost and maximize sequencing output. We have sent samples from patients 1 and 

2 to sequence with both Illumina and nanopore sequencers. In the future, it is our goal to 

conduct a full-scale comparison of the advantages and disadvantages of WGS using three 

techniques: Next-generation sequencing (Illumina), Nanopore sequencing (using RCA and 

DNA concatenation strategies).  

 

  



www.manaraa.com

 

149 

 

Chapter 9 

 

Summary and Conclusion 

 

This thesis focuses on exploring the α-hemolysin nanopore’s capability to detect 

and study molecular markers of cancer for precision medicine. The studies described 

herein, and summarized below, showcase different techniques to improve nanopore 

sensitivity in molecular detection and demonstrate how to bring the application of this 

technique from the lab-bench to the clinic.   

In Chapter 2, current work on applying nanopore technology in studying cancer 

biomarkers is summarized. We provided an overview of the essential genetic and 

epigenetic modifications in cancerous tissue and the progression of cancer cells. With the 

complexity of the human body and more specifically cancer tissues, many of the 

mechanisms for cancer proliferation remain unknown. Nanopore membranes have shown 

their ability to detect various biomolecules’ chemical and structural modifications, as well 

as genetic and epigenetic modifications. There is a growing opportunity for more 

significant research in this field to be conducted in the next few decades.   

Unlike solid-state nanopores, whose size can vary, α-hemolysin is a bacterial toxin 

that forms a nanopore with well-defined structure and consistent dimensions. This feature 

allows a reproducible sensing of molecular structure. Taking advantage of the α-hemolysin 

nanopore’s size selection, in Chapter 3, we evaluated the pore’s ability to sense DNA 

secondary structures that were different in size. The employed C-rich single-stranded DNA 

were able to adopt an i-motif structure in solutions with pH less than 6.15 and a linear 

strand when pH is higher than 6.15. However, we found that in highly concentrated buffers 

(1M KCl and 1M NaCl) cations can bind to and induce the compaction process on C-rich 
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DNA, as the exocyclic amino group of cytosine allows strong cation-nucleotide binding 

because of resonance effects. This process created secondary structures larger than 2.6nm 

(nanopore cis opening), resulting in shallow current blockage events (%I/Io < 30%) that 

could be sensed by the pore. In either type of solution (1M NaCl or 1M KCl), both DNA 

compacting and translocating events were observed, hinting that the 15C-ssDNA adopted 

both elongated and compacted forms and could spontaneously shift from one conformation 

to the other.  

Formation of G-quadruplexes in the promoter region of Ckit1 proto-oncogene 

suppresses gene expression and prevents cancer cell replication. Excessive activation of 

the C-kit1 DNA sequence is implicated in several human malignancies and its expression 

is downregulated by the stabilization of its G-quadruplex structure. In Chapter 4, we 

studied the formability, stability and responsiveness to CX-5461 cancer drug of Ckit1 G-

quadruplex in K+ and Na+ environment. Using circular dichroism, we determined that Ckit1 

G-quadruplex adopted a parallel folding topology in both environments, with a more tightly 

packed structure in the presence of K+. While formation of a stable G-quadruplex was 

observed in both environments, Na+ G-quadruplex folded much slower and unfolded more 

rapidly than K+ G-quadruplex. Binding of CX-5461 effectively increased the structural 

stability and structural volume of G-quadruplex in both Na+ and K+ environments. 

Subsequent validation by thermal denaturation with circular dichroism revealed a 13˚C and 

11˚C increase in melting temperature of (CX-5461 bound versus unbound) K+ and Na+ G-

quadruplex, respectively. Moreover, through exploratory analysis using clustering, we 

identified two distinct populations of current blockage events, representing  the two stages 

of (i) capturing (%I/Io = 67.4±3.9%) and (ii) translocation of G-quadruplex through the 
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pore (%I/Io = 85.1±2.9%). The volume of G-quadruplex is correlated with the cation 

species and presence of CX-5461. As the stability and volume of Ckit1 G-quadruplex were 

dependent on cations and ligand-binding status, it was feasible to distinguish different 

structures of Ckit1 G-quadruplex using nanopore data alone (e.g. predicting the binding 

state of CX-5461 to Ckit1 G-quadruplex in Na+ environment: 92.4% sensitivity, 70.3% 

specificity, and 81.3% average accuracy). 

In addition to binding of ligands (e.g. CX5461), other factors, such as point 

mutation, can also strongly affect the stability of G-quadruplex. Activating mutation on 

Ckit1 has been observed in several types of malignancy; however, their direct effect on 

cancer drug efficacy (i.e. CX5461) remains unclear. Therefore, in Chapter 5, we evaluated 

the ability of mutated Ckit1 sequences to form G-quadruplex, as well as their stability with 

respect to ligand binding. We employed six samples that were variations of the Ckit1 

sequence, including one wild-type (control) and five sequences containing 1-6 guanine 

mutations. Nanopore dwell time analysis of these mutated structures revealed a general 

decrease in G-quadruplex structural stability, with the most significant changes present 

when there was more than one mutation of the same G-quartet. Thermal denaturation study 

with circular dichroism showed that sequences with more than one mutation on the same 

G-quartet lost their characteristic positive peak (at 263nm), hinting a partial or uncomplete 

formation of G-quadruplex. While addition of CX5461 to mutated Ckit1 DNA sequences 

increased the overall stability of G-quadruplex structure formed by most samples, 

sequences with mutations on the outer G-quartet did not exhibit statistically significant 

changes. This result indicated the important role of the outer G-quartet for ligand-binding 

and stabilizing the structure. Furthermore, we implemented random forest classifier to 
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nanopore sensing data to distinguish mutated from unmutated Ckit1 DNA ( AUC = 0.89, 

sensitivity = 81.9%, specificity = 83.4% and balanced accuracy = 82.7%). Understanding 

the potential effect of mutation on drug efficiency can have implications in the 

implementation of cancer therapies. Our results indicate the potential of using a nanopore 

biosensor to study DNA molecular stability and their interaction with cancer drugs for 

constructing methods to predict therapeutic response, as well as personalizing cancer 

treatment.  

In addition to DNA secondary structure, other types of DNA modifications, such 

as methylation of DNA, are important markers for cancer diagnosis and therapeutic 

response prediction. While conventional methods can detect cytosine methylation with 

high accuracy, they still require a high amount of input and extensive sample processing. 

In Chapter 6, we  performed, for the first time, label-free detection of cytosine methylation 

on single-stranded DNA, using an α-hemolysin nanopore sensor. One of the main 

challenges with nanopore sensing is low accuracy due to fast translocation speed of 

biomolecules through the pore. To tackle this issue, we employed a concentration gradient 

of salt across the experimental chambers. As the cations move down the concentration 

gradient, they move against DNA translocation direction, thus, significantly lowering the 

electrophoretic drive of the system and DNA translocation speed. With a 15-fold increase 

of LiCl concentration going from the cis to the trans chamber, DNA translocation speed 

was effectively decreased by 5 times, allowing a clear distinction between methylated and 

unmethylated DNA. Distribution of current blockage amplitude for methylated – 

unmethylated DNA mixtures exhibited bimodule distributions, with peaks’ height 

relatively proportional to the mixture content (unmethylated : methylated DNA ratio). 
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Results of this study indicate the potential of simplifying label-free cytosine methylation 

detection with nanopore, using LiCl salt concentration asymmetry.  

While label-free detection of cytosine methylation is feasible, current blockage 

amplitude of methylated DNA varies based on the local-sequence context, thus, 

complicating the computational aspect. Therefore, in Chapter 7, we employed methyl-

binding protein (MBD2) to enhance the signal of methylated cytosine going through the 

nanopore. Binding of MBD2 to duplex DNA increased the structural stability and 

significantly prolonged the event translocation time through the pore. Applying machine 

learning classification models on nanopore results revealed that utilizing MBD2 protein 

provided a good discriminatory power for cytosine methylation detection with an optimal 

AUC of 0.83, 88% sensitivity and 86% specificity (using KNN algorithm).  

Finally, we explored the potential of applying nanopore technology to capture 

cancer biomarkers in a clinical setting. Liquid biopsy—a technique to study cancer through 

circulating-tumor DNA—offers a minimally invasive and reliable detection of tumors’ 

genomic evolution through longitudinal sampling. Current work with cell-free DNA 

obtained from cancer cell culture media reflected the existence of long cfDNA fragment 

(>1kbps). However, current sequencing techniques, which depend on enzymatic reaction, 

are limited by the read-length (<500bps). Compared to conventional methods, the nanopore 

offers a shorter sample processing time and the ability to capture long cfDNA fragments. 

However, because of their rapid translocation speed, short DNA fragments (<1kbps) are 

often missed by the nanopore. In Chapter 8, we developed two methods to capture both 

short and long fragments of cell-free DNA using commercially-available nanopore assay. 

In the first method, we utilized a guide system to capture cfDNA, then performed rolling-
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circle amplification to amplify and convert them into long fragments with tandem repeats. 

In the second method, we used standard sequencing library preparation (NGS library) to 

perform whole-genome amplification, after which, long fragments were generated through 

blunt-end ligation (Gibson assembly). We tested the two methods using  plasma samples 

obtained from the same lung cancer patients. Sequencing results with Flongle showed 

successful capture of both short and long cfDNA fragments (50bps to over 600bps). While 

further validations and optimization are needed, our study demonstrated the potential 

benefits and applications of nanopore in sequencing cfDNA for monitoring treating 

progression. 

Overall, in this thesis, we aimed to validate and improve α-hemolysin nanopore 

assays toward precision medicine in oncology. Specifically, we investigated the potential 

of lab-based and commercially available nanopore assays for molecular sensing and 

ctDNA sequencing. While lab-based assay offers the flexibility for controlling and fine-

tuning of parameters, commercial assay provides higher sensing resolution and throughput. 

Each method certainly has its own potential area in precision medicine. Thanks to its low 

capital cost and small footprint, nanopore technology offers a higher mobility and more 

flexibility than conventional techniques. Our study demonstrated the nanopore’s ability for 

rapid molecular sensing and sequencing (within a few days, compared to the standard three 

weeks’ waiting period for NGS sequencing). The biggest challenge remaining for both 

types of assays is their high input requirement, compared to clinical standards. Therefore, 

there is a need for future advancements in both wet lab and technological development for 

a multi-targets nanopore assay.  

 



www.manaraa.com

 

155 

 

References 

 

1. Cooper, G. M.; Hausman, R. E., The development and causes of cancer. The cell: 

A molecular approach 2000, 725-766. 

2. Anand, P.; Kunnumakara, A. B.; Sundaram, C.; Harikumar, K. B.; Tharakan, S. T.; 

Lai, O. S.; Sung, B.; Aggarwal, B. B., Cancer is a preventable disease that requires major 

lifestyle changes. Pharmaceutical research 2008, 25 (9), 2097-2116. 

3. Croce, C. M., Oncogenes and cancer. New England journal of medicine 2008, 358 

(5), 502-511. 

4. Libermann, T. A.; Zerbini, L. F., Targeting transcription factors for cancer gene 

therapy. Current gene therapy 2006, 6 (1), 17-33. 

5. Herceg, Z.; Hainaut, P., Genetic and epigenetic alterations as biomarkers for cancer 

detection, diagnosis and prognosis. Molecular oncology 2007, 1 (1), 26-41. 

6. Bielas, J. H.; Loeb, K. R.; Rubin, B. P.; True, L. D.; Loeb, L. A., Human cancers 

express a mutator phenotype. Proceedings of the National Academy of Sciences 2006, 103 

(48), 18238-18242. 

7. Feinberg, A. P.; Ohlsson, R.; Henikoff, S., The epigenetic progenitor origin of 

human cancer. Nature reviews genetics 2006, 7 (1), 21-33. 

8. Jaenisch, R.; Bird, A., Epigenetic regulation of gene expression: how the genome 

integrates intrinsic and environmental signals. Nature genetics 2003, 33 (3), 245-254. 

9. Egger, G.; Liang, G.; Aparicio, A.; Jones, P. A., Epigenetics in human disease and 

prospects for epigenetic therapy. Nature 2004, 429 (6990), 457-463. 

10. Takeshima, H.; Ushijima, T., Accumulation of genetic and epigenetic alterations in 

normal cells and cancer risk. NPJ Precision Oncology 2019, 3 (1), 1-8. 

11. Friedman, A. A.; Letai, A.; Fisher, D. E.; Flaherty, K. T., Precision medicine for 

cancer with next-generation functional diagnostics. Nature Reviews Cancer 2015, 15 (12), 

747-756. 

12. Ku, C.-S.; Roukos, D. H., From next-generation sequencing to nanopore 

sequencing technology: paving the way to personalized genomic medicine. Expert review 

of medical devices 2013, 10 (1), 1-6. 

13. Tran, B.; Dancey, J. E.; Kamel-Reid, S.; McPherson, J. D.; Bedard, P. L.; Brown, 

A. M.; Zhang, T.; Shaw, P.; Onetto, N.; Stein, L., Cancer genomics: technology, discovery, 

and translation. Journal of Clinical Oncology 2012, 30 (6), 647-660. 

14. Metzker, M. L., Sequencing technologies—the next generation. Nature reviews 

genetics 2010, 11 (1), 31-46. 



www.manaraa.com

 

156 

 

15. Shah, S. P.; Roth, A.; Goya, R.; Oloumi, A.; Ha, G.; Zhao, Y.; Turashvili, G.; Ding, 

J.; Tse, K.; Haffari, G., The clonal and mutational evolution spectrum of primary triple-

negative breast cancers. Nature 2012, 486 (7403), 395-399. 

16. Banerji, S.; Cibulskis, K.; Rangel-Escareno, C.; Brown, K. K.; Carter, S. L.; 

Frederick, A. M.; Lawrence, M. S.; Sivachenko, A. Y.; Sougnez, C.; Zou, L., Sequence 

analysis of mutations and translocations across breast cancer subtypes. Nature 2012, 486 

(7403), 405-409. 

17. Ellis, M. J.; Ding, L.; Shen, D.; Luo, J.; Suman, V. J.; Wallis, J. W.; Van Tine, B. 

A.; Hoog, J.; Goiffon, R. J.; Goldstein, T. C., Whole-genome analysis informs breast cancer 

response to aromatase inhibition. Nature 2012, 486 (7403), 353-360. 

18. Curtis, C.; Shah, S. P.; Chin, S.-F.; Turashvili, G.; Rueda, O. M.; Dunning, M. J.; 

Speed, D.; Lynch, A. G.; Samarajiwa, S.; Yuan, Y., The genomic and transcriptomic 

architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012, 486 (7403), 

346-352. 

19. Ross-Innes, C. S.; Stark, R.; Teschendorff, A. E.; Holmes, K. A.; Ali, H. R.; 

Dunning, M. J.; Brown, G. D.; Gojis, O.; Ellis, I. O.; Green, A. R., Differential oestrogen 

receptor binding is associated with clinical outcome in breast cancer. Nature 2012, 481 

(7381), 389-393. 

20. Fojo, T. In Precision oncology: a strategy we were not ready to deploy, Seminars 

in oncology, 2016; p 9. 

21. Prasad, V., Perspective: The precision-oncology illusion. Nature 2016, 537 (7619), 

S63-S63. 

22. Prasad, V.; Fojo, T.; Brada, M., Precision oncology: origins, optimism, and 

potential. The Lancet Oncology 2016, 17 (2), e81-e86. 

23. Tannock, I. F.; Hickman, J. A., Limits to personalized cancer medicine. N Engl J 

Med 2016, 375 (13), 1289-1294. 

24. Gupta, G. P.; Massagué, J., Cancer metastasis: building a framework. Cell 2006, 

127 (4), 679-695. 

25. Chaffer, C. L.; Weinberg, R. A., A perspective on cancer cell metastasis. science 

2011, 331 (6024), 1559-1564. 

26. Seyfried, T. N.; Huysentruyt, L. C., On the origin of cancer metastasis. Critical 

reviews in oncogenesis 2013, 18 (1-2), 43. 

27. Yates, L. R.; Gerstung, M.; Knappskog, S.; Desmedt, C.; Gundem, G.; Van Loo, 

P.; Aas, T.; Alexandrov, L. B.; Larsimont, D.; Davies, H., Subclonal diversification of 

primary breast cancer revealed by multiregion sequencing. Nature medicine 2015, 21 (7), 

751. 



www.manaraa.com

 

157 

 

28. Gerlinger, M.; Rowan, A. J.; Horswell, S.; Larkin, J.; Endesfelder, D.; Gronroos, 

E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P., Intratumor heterogeneity and 

branched evolution revealed by multiregion sequencing. New England journal of medicine 

2012, 366 (10), 883-892. 

29. Gerlinger, M.; Horswell, S.; Larkin, J.; Rowan, A. J.; Salm, M. P.; Varela, I.; Fisher, 

R.; McGranahan, N.; Matthews, N.; Santos, C. R., Genomic architecture and evolution of 

clear cell renal cell carcinomas defined by multiregion sequencing. Nature genetics 2014, 

46 (3), 225. 

30. Zhang, J.; Fujimoto, J.; Zhang, J.; Wedge, D. C.; Song, X.; Zhang, J.; Seth, S.; 

Chow, C.-W.; Cao, Y.; Gumbs, C., Intratumor heterogeneity in localized lung 

adenocarcinomas delineated by multiregion sequencing. Science 2014, 346 (6206), 256-

259. 

31. Castro-Giner, F.; Gkountela, S.; Donato, C.; Alborelli, I.; Quagliata, L.; Ng, C.; 

Piscuoglio, S.; Aceto, N., Cancer diagnosis using a liquid biopsy: challenges and 

expectations. Diagnostics 2018, 8 (2), 31. 

32. Schweiger, M. R.; Kerick, M.; Timmermann, B.; Isau, M., The power of NGS 

technologies to delineate the genome organization in cancer: from mutations to structural 

variations and epigenetic alterations. Cancer and Metastasis Reviews 2011, 30 (2), 199-

210. 

33. Venkatesan, B. M.; Bashir, R., Nanopore sensors for nucleic acid analysis. Nature 

nanotechnology 2011, 6 (10), 615-624. 

34. Howorka, S.; Siwy, Z., Nanopore analytics: sensing of single molecules. Chemical 

Society Reviews 2009, 38 (8), 2360-2384. 

35. Deamer, D. W.; Branton, D., Characterization of nucleic acids by nanopore 

analysis. Accounts of chemical research 2002, 35 (10), 817-825. 

36. Gu, L.-Q.; Wanunu, M.; Wang, M. X.; McReynolds, L.; Wang, Y., Detection of 

miRNAs with a nanopore single-molecule counter. Expert review of molecular diagnostics 

2012, 12 (6), 573-584. 

37. Shim, J.; Humphreys, G. I.; Venkatesan, B. M.; Munz, J. M.; Zou, X.; Sathe, C.; 

Schulten, K.; Kosari, F.; Nardulli, A. M.; Vasmatzis, G., Detection and quantification of 

methylation in DNA using solid-state nanopores. Scientific reports 2013, 3. 

38. Venkatesan, B. M.; Dorvel, B.; Yemenicioglu, S.; Watkins, N.; Petrov, I.; Bashir, 

R., Highly sensitive, mechanically stable nanopore sensors for DNA analysis. Advanced 

Materials 2009, 21 (27), 2771-2776. 

39. Feng, Y.; Zhang, Y.; Ying, C.; Wang, D.; Du, C., Nanopore-based fourth-

generation DNA sequencing technology. Genomics, proteomics & bioinformatics 2015, 13 

(1), 4-16. 



www.manaraa.com

 

158 

 

40. Rhee, M.; Burns, M. A., Nanopore sequencing technology: nanopore preparations. 

TRENDS in Biotechnology 2007, 25 (4), 174-181. 

41. Deng, T.; Li, M.; Wang, Y.; Liu, Z., Development of solid-state nanopore 

fabrication technologies. Science bulletin 2015, 60 (3), 304-319. 

42. Kwok, H.; Briggs, K.; Tabard-Cossa, V., Nanopore fabrication by controlled 

dielectric breakdown. PloS one 2014, 9 (3), e92880. 

43. Miles, B. N.; Ivanov, A. P.; Wilson, K. A.; Doğan, F.; Japrung, D.; Edel, J. B., 

Single molecule sensing with solid-state nanopores: novel materials, methods, and 

applications. Chemical Society Reviews 2013, 42 (1), 15-28. 

44. Desai, T. A.; Hansford, D. J.; Kulinsky, L.; Nashat, A. H.; Rasi, G.; Tu, J.; Wang, 

Y.; Zhang, M.; Ferrari, M., Nanopore technology for biomedical applications. Biomedical 

Microdevices 1999, 2 (1), 11-40. 

45. Gu, L.-Q.; Shim, J. W., Single molecule sensing by nanopores and nanopore 

devices. Analyst 2010, 135 (3), 441-451. 

46. Banerjee, S.; Shim, J.; Rivera, J.; Jin, X.; Estrada, D.; Solovyeva, V.; You, X.; Pak, 

J.; Pop, E.; Aluru, N., Electrochemistry at the Edge of a Single Graphene Layer in a 

Nanopore. ACS nano 2012, 7 (1), 834-843. 

47. Shim, J.; Gu, L.-Q., Single-molecule investigation of G-quadruplex using a 

nanopore sensor. Methods 2012, 57 (1), 40-46. 

48. Banerjee, S.; Wilson, J.; Shim, J.; Shankla, M.; Corbin, E. A.; Aksimentiev, A.; 

Bashir, R., Slowing DNA transport using graphene–DNA interactions. Advanced 

functional materials 2015, 25 (6), 936-946. 

49. Branton, D.; Deamer, D. W.; Marziali, A.; Bayley, H.; Benner, S. A.; Butler, T.; Di 

Ventra, M.; Garaj, S.; Hibbs, A.; Huang, X., The potential and challenges of nanopore 

sequencing. Nature biotechnology 2008, 26 (10), 1146-1153. 

50. Vu, T.; Davidson, S.-L.; Borgesi, J.; Maksudul, M.; Jeon, T.-J.; Shim, J., Piecing 

together the puzzle: nanopore technology in detection and quantification of cancer 

biomarkers. RSC advances 2017, 7 (68), 42653-42666. 

51. Bello, J.; Kim, Y.-R.; Kim, S. M.; Jeon, T.-J.; Shim, J., Lipid bilayer membrane 

technologies: A review on single-molecule studies of DNA sequencing by using membrane 

nanopores. Microchimica Acta 2017, 1-15. 

52. Song, L.; Hobaugh, M. R.; Shustak, C.; Cheley, S.; Bayley, H.; Gouaux, J. E., 

Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 1996, 

274 (5294), 1859-1865. 



www.manaraa.com

 

159 

 

53. Shim, J. W.; Tan, Q.; Gu, L.-Q., Single-molecule detection of folding and unfolding 

of the G-quadruplex aptamer in a nanopore nanocavity. Nucleic acids research 2008, 37 

(3), 972-982. 

54. Ding, Y.; Fleming, A. M.; He, L.; Burrows, C. J., Unfolding kinetics of the human 

telomere i-motif under a 10 pN force imposed by the α-hemolysin nanopore identify 

transient folded-state lifetimes at physiological pH. Journal of the American Chemical 

Society 2015, 137 (28), 9053-9060. 

55. Guéron, M.; Leroy, J.-L., The i-motif in nucleic acids. Current opinion in structural 

biology 2000, 10 (3), 326-331. 

56. Shim, J.; Kim, Y.; Humphreys, G. I.; Nardulli, A. M.; Kosari, F.; Vasmatzis, G.; 

Taylor, W. R.; Ahlquist, D. A.; Myong, S.; Bashir, R., Nanopore-based assay for detection 

of methylation in double-stranded DNA fragments. Acs Nano 2015, 9 (1), 290-300. 

57. Gilboa, T.; Torfstein, C.; Juhasz, M.; Grunwald, A.; Ebenstein, Y.; Weinhold, E.; 

Meller, A., Single-Molecule DNA Methylation Quantification Using Electro-optical 

Sensing in Solid-State Nanopores. ACS nano 2016, 10 (9), 8861-8870. 

58. Nakane, J. J.; Akeson, M.; Marziali, A., Nanopore sensors for nucleic acid analysis. 

Journal of Physics: Condensed Matter 2003, 15 (32), R1365. 

59. Rhee, M.; Burns, M. A., Nanopore sequencing technology: research trends and 

applications. Trends in biotechnology 2006, 24 (12), 580-586. 

60. Wanunu, M., Nanopores: A journey towards DNA sequencing. Physics of Life 

Reviews 2012, 9 (2), 125-158. 

61. Maitra, R. D.; Kim, J.; Dunbar, W. B., Recent advances in nanopore sequencing. 

Electrophoresis 2012, 33 (23), 3418-3428. 

62. Namazie, A.; Alavi, S.; Olopade, O. I.; Pauletti, G.; Aghamohammadi, N.; 

Aghamohammadi, M.; Gornbein, J. A.; Calcaterra, T. C.; Slamon, D. J.; Wang, M. B., 

Cyclin D1 amplification and p16 (MTS1/CDK4I) deletion correlate with poor prognosis in 

head and neck tumors. The Laryngoscope 2002, 112 (3), 472-481. 

63. Albertson, D. G.; Collins, C.; McCormick, F.; Gray, J. W., Chromosome 

aberrations in solid tumors. Nature genetics 2003, 34 (4), 369-376. 

64. Nowell PC, H. D., Chromosome studies on normal and leukemic human 

leukocytes. J Natl Cancer Inst 1960, 25, 85-109. 

65. Dryja TP, R. J., Joyce JM, Petersen RA., Molecular detection of deletions involving 

band q14 of chromosome 13 in retinoblastomas. Proc Natl Acad Sci U S A 1986, 83, 7391-

4. 



www.manaraa.com

 

160 

 

66. Slamon DJ, C. G., Wong SG, Levin WJ, Ullrich A, McGuire WL., Human breast 

cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. 

Science 1987, 82, 177-182. 

67. Norris, A. e. a., Nanopore sequencing detects structural variants in cancer. Cancer 

Biology & Therapy 2016, 17, 246-253. 

68. Jones S, Z. X., Parsons DW, Lin JC, Leary RJ, Angenendt P, Man-koo P, Carter H, 

Kamiyama H, Jimeno A, et al. , Core signaling path-ways in human pancreatic cancers 

revealed by global genomicanalyses. Science 2008, 1801-6. 

69. Biankin AV, W. N., Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, Miller 

DK, Wilson PJ, Patch AM, Wu J, et al, Pancreatic cancer genomes reveal aberrations in 

axon guidance pathway genes. Nature 2012, 491, 399-405. 

70. Norris AL, K. H., Makohon-Moore A, Pallavajjala A, Morsberger LA, Lee K, 

Batista D, Iacobuzio-Donahue CA, Lin MT, Klein AP, et al, TransFlip mutations produce 

deletions in pancreatic cancer. Genes, Chromosomes Cancer 2015, 54, 472-481. 

71. Diehl F, S. K., Choti MA, Romans K, Goodman S, Li M, Thornton K, Agrawal N, 

Sokoll L, Szabo SA, et al., Circulating mutant DNA to assess tumor dynamics. Nat Med 

2008, 14 (985-990). 

72. Ritz, A.; Bashir, A.; Sindi, S.; Hsu, D.; Hajirasouliha, I.; Raphael, B. J., 

Characterization of structural variants with single molecule and hybrid sequencing 

approaches. Bioinformatics 2014, 30 (24), 3458-3466. 

73. Medvedev, P.; Stanciu, M.; Brudno, M., Computational methods for discovering 

structural variation with next-generation sequencing. Nature methods 2009, 6, S13-S20. 

74. Ewing, B.; Green, P., Base-calling of automated sequencer traces using phred. II. 

Error probabilities. Genome research 1998, 8 (3), 186-194. 

75. Alkan, C.; Coe, B. P.; Eichler, E. E., Genome structural variation discovery and 

genotyping. Nature Reviews Genetics 2011, 12 (5), 363-376. 

76. Darnell, J. E., Transcription factors as targets for cancer therapy. Nature Reviews 

Cancer 2002, 2 (10), 740-749. 

77. Blume-Jensen, P.; Hunter, T., Oncogenic kinase signalling. Nature 2001, 411 

(6835), 355-365. 

78. Squires, A. e. a., Nanopore sensing of individual transcription factors bound to 

DNA. Sci. Rep 2015. 

79. Strong, L. C.; Riccardi, V. M.; Ferrell, R. E.; Sparkes, R. S., Familial 

retinoblastoma and chromosome 13 deletion transmitted via an insertional translocation. 

Science 1981, 213 (4515), 1501-1503. 



www.manaraa.com

 

161 

 

80. Konopka, J. B.; Watanabe, S. M.; Singer, J. W.; Collins, S. J.; Witte, O. N., Cell 

lines and clinical isolates derived from Ph1-positive chronic myelogenous leukemia 

patients express c-abl proteins with a common structural alteration. Proceedings of the 

National Academy of Sciences 1985, 82 (6), 1810-1814. 

81. Tsujimoto, Y.; Gorham, J.; Cossman, J.; Jaffe, E.; Croce, C. M., The t (14; 18) 

chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ 

joining. Science 1985, 229 (4720), 1390-1393. 

82. Catlett-Falcone, R.; Landowski, T. H.; Oshiro, M. M.; Turkson, J.; Levitzki, A.; 

Savino, R.; Ciliberto, G.; Moscinski, L.; Fernández-Luna, J. L.; Nuñez, G., Constitutive 

activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. 

Immunity 1999, 10 (1), 105-115. 

83. Bowman, T.; Garcia, R.; Turkson, J.; Jove, R., STATs in oncogenesis. Oncogene 

2000, 19 (21). 

84. Coffer, P. J.; Koenderman, L.; de Groot, R. P., The role of STATs in myeloid 

differentiation and leukemia. Oncogene 2000, 19 (21), 2511-2522. 

85. Song, J. I.; Grandis, J. R., STAT signaling in head and neck cancer. Oncogene 2000, 

19 (21). 

86. Bromberg, J., Stat proteins and oncogenesis. The Journal of clinical investigation 

2002, 109 (9), 1139-1142. 

87. Mijušković, M.; Brown, S. M.; Tang, Z.; Lindsay, C. R.; Efstathiadis, E.; Deriano, 

L.; Roth, D. B., A streamlined method for detecting structural variants in cancer genomes 

by short read paired-end sequencing. PloS one 2012, 7 (10), e48314. 

88. Garner, M. M.; Revzin, A., A gel electrophoresis method for quantifying the 

binding of proteins to specific DNA regions: application to components of the Escherichia 

coli lactose operon regulatory system. Nucleic acids research 1981, 9 (13), 3047-3060. 

89. Frederick, C. A.; Grable, J.; Melia, M.; Samudzi, C.; Jen-Jacobson, L.; Bi-Cheng, 

W.; Greene, P.; Boyer, H. W.; Rosenberg, J. M., Kinked DNA in crystalline complex with 

EcoRI endonuclease. Nature 1984, 309 (5966), 327-331. 

90. Pavletich, N. P.; Pabo, C. O., Zinc finger-DNA recognition: crystal structure of a 

Zif268-DNA complex at 2.1 A. Science 1991, 252 (5007), 809-817. 

91. Johnson, D. S.; Mortazavi, A.; Myers, R. M.; Wold, B., Genome-wide mapping of 

in vivo protein-DNA interactions. Science 2007, 316 (5830), 1497-1502. 

92. Takayama, Y.; Sahu, D.; Iwahara, J., NMR studies of translocation of the Zif268 

protein between its target DNA Sites. Biochemistry 2010, 49 (37), 7998-8005. 



www.manaraa.com

 

162 

 

93. Spitz, F. F., E. E. M, Transcription factors: from enhancer binding to developmental 

control. Nat Rev Genet 2012, 13. 

94. Bettegowda C, S. M., Leary RJ, Kinde I, Wang Y, Agrawal N, Bartlett BR, Wang 

H, Luber B, Alani RM, et al, Detection of circulating tumor DNA in early- and late-stage 

human malignancies. Sci Transl Med 2014, 6. 

95. Brouilette, S.; Singh, R. K.; Thompson, J. R.; Goodall, A. H.; Samani, N. J., White 

cell telomere length and risk of premature myocardial infarction. Arteriosclerosis, 

thrombosis, and vascular biology 2003, 23 (5), 842-846. 

96. Maubaret, C. G.; Salpea, K. D.; Jain, A.; Cooper, J. A.; Hamsten, A.; Sanders, J.; 

Montgomery, H.; Neil, A.; Nair, D.; Humphries, S. E., Telomeres are shorter in myocardial 

infarction patients compared to healthy subjects: correlation with environmental risk 

factors. Journal of molecular medicine 2010, 88 (8), 785-794. 

97. Weischer, M.; Bojesen, S. E.; Cawthon, R. M.; Freiberg, J. J.; Tybjærg-Hansen, A.; 

Nordestgaard, B. G., Short telomere length, myocardial infarction, ischemic heart disease, 

and early death. Arteriosclerosis, thrombosis, and vascular biology 2012, 32 (3), 822-829. 

98. Weischer, M.; Nordestgaard, B. G.; Cawthon, R. M.; Freiberg, J. J.; Tybjærg-

Hansen, A.; Bojesen, S. E., Short telomere length, cancer survival, and cancer risk in 47102 

individuals. Journal of the National Cancer Institute 2013, djt016. 

99. Hande, M. P.; Samper, E.; Lansdorp, P.; Blasco, M. A., Telomere length dynamics 

and chromosomal instability in cells derived from telomerase null mice. The Journal of 

cell biology 1999, 144 (4), 589-601. 

100. Hahn, W. C.; Stewart, S. A.; Brooks, M. W.; York, S. G.; Eaton, E.; Kurachi, A.; 

Beijersbergen, R. L.; Knoll, J. H.; Meyerson, M.; Weinberg, R. A., Inhibition of telomerase 

limits the growth of human cancer cells. Nature medicine 1999, 5 (10), 1164-1170. 

101. Morales, C. P.; Holt, S. E.; Ouellette, M.; Kaur, K. J.; Yan, Y.; Wilson, K. S.; 

White, M. A.; Wright, W. E.; Shay, J. W., Absence of cancer–associated changes in human 

fibroblasts immortalized with telomerase. Nature genetics 1999, 21 (1), 115-118. 

102. Cawthon, R. M., Telomere measurement by quantitative PCR. Nucleic acids 

research 2002, 30 (10), e47-e47. 

103. Shim, J. W.; Gu, L.-Q., Encapsulating a single G-quadruplex aptamer in a protein 

nanocavity. The journal of physical chemistry. B 2008, 112 (28), 8354. 

104. Shim, J. W.; Tan, Q.; Gu, L.-Q., Single-molecule detection of folding and unfolding 

of the G-quadruplex aptamer in a nanopore nanocavity. Nucleic acids research 2009, 37 

(3), 972-982. 

 



www.manaraa.com

 

163 

 

105. An, N.; Fleming, A. M.; Middleton, E. G.; Burrows, C. J., Single-molecule 

investigation of G-quadruplex folds of the human telomere sequence in a protein 

nanocavity. Proceedings of the National Academy of Sciences 2014, 111 (40), 14325-

14331. 

106. Robertson, J. W. F.; Kasianowicz, J. J.; Banerjee, S., Analytical Approaches for 

Studying Transporters, Channels and Porins. Chemical Reviews 2012, 112 (12), 6227-

6249. 

107. Jung, Y. C., S.; Braha, O.; Bayley, H. , The internal cavity of the staphylococcal a-

Hemolysin pore accommodates approximately 175 exogenous amino acid residues. 

Biochemistry 2005, 44 (25), 8918-8929. 

108. Brooks, T. A.; Kendrick, S.; Hurley, L., Making sense of G-quadruplex and i-motif 

functions in oncogene promoters. FEBS Journal 2010, 277 (17), 3459-3469. 

109. Liang, G.; Qureshi, A. A.; Guo, Q.; De Vivo, I.; Han, J., No association between 

telomere length in peripheral blood leukocytes and the risk of nonmelanoma skin cancer. 

Cancer Epidemiology Biomarkers & Prevention 2011, 20 (5), 1043-1045. 

110. Liu, Z.; Ma, H.; Wei, S.; Li, G.; Sturgis, E. M.; Wei, Q., Telomere length and TERT 

functional polymorphisms are not associated with risk of squamous cell carcinoma of the 

head and neck. Cancer Epidemiology Biomarkers & Prevention 2011, 20 (12), 2642-2645. 

111. Hou, L.; Zhang, X.; Gawron, A. J.; Liu, J., Surrogate tissue telomere length and 

cancer risk: shorter or longer? Cancer letters 2012, 319 (2), 130-135. 

112. Hanahan, D.; Weinberg, R. A., The hallmarks of cancer. cell 2000, 100 (1), 57-70. 

113. Haffner, M. C.; Chaux, A.; Meeker, A. K.; Esopi, D.; Gerber, J.; Pellakuru, L. G.; 

Toubaji, A.; Argani, P.; Iacobuzio-Donahue, C.; Nelson, W. G., Global 5-

hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell 

compartments and in human cancers. Oncotarget 2011, 2 (8), 627-637. 

114. Holmfeldt, L.; Mullighan, C. G., The role of TET2 in hematologic neoplasms. 

Cancer cell 2011, 20 (1), 1-2. 

115. Song, C.-X.; Szulwach, K. E.; Fu, Y.; Dai, Q.; Yi, C.; Li, X.; Li, Y.; Chen, C.-H.; 

Zhang, W.; Jian, X., Selective chemical labeling reveals the genome-wide distribution of 

5-hydroxymethylcytosine. Nature biotechnology 2011, 29 (1), 68-72. 

116. Yang, H.; Liu, Y.; Bai, F.; Zhang, J.; Ma, S.; Liu, J.; Xu, Z.; Zhu, H.; Ling, Z.; Ye, 

D., Tumor development is associated with decrease of TET gene expression and 5-

methylcytosine hydroxylation. Oncogene 2013, 32 (5), 663-669. 

117. Bacolla, A.; Cooper, D. N.; Vasquez, K. M., Mechanisms of base substitution 

mutagenesis in cancer genomes. Genes 2014, 5 (1), 108-146. 



www.manaraa.com

 

164 

 

118. Esteller, M.; Corn, P. G.; Baylin, S. B.; Herman, J. G., A gene hypermethylation 

profile of human cancer. Cancer research 2001, 61 (8), 3225-3229. 

119. Strathdee, G.; Brown, R., Aberrant DNA methylation in cancer: potential clinical 

interventions. Expert reviews in molecular medicine 2002, 4 (04), 1-17. 

120. Laird, P. W., The power and the promise of DNA methylation markers. Nature 

Reviews Cancer 2003, 3 (4), 253-266. 

121. Vanaja, D. K.; Ehrich, M.; Van den Boom, D.; Cheville, J. C.; Karnes, R. J.; 

Tindall, D. J.; Cantor, C. R.; Young, C. Y., Hypermethylation of genes for diagnosis and 

risk stratification of prostate cancer. Cancer investigation 2009, 27 (5), 549-560. 

122. Nakamura, N.; Takenaga, K., Hypomethylation of the metastasis-associated 

S100A4 gene correlates with gene activation in human colon adenocarcinoma cell lines. 

Clinical & experimental metastasis 1998, 16 (5), 471-479. 

123. Adrianadecapoa, A. M.; Della Rosa, S.; Caiafa, P.; Mariani, L.; Del Nonno, F.; 

Vocaturo, A.; Donnorso, R. A. P.; Niveleau, A.; Grappelli, C., DNA demethylation is 

directly related to tumour progression: evidence in normal, pre-malignant and malignant 

cells from uterine cervix samples. Oncology reports 2003, 10, 545-549. 

124. Akiyama, Y.; Maesawa, C.; Ogasawara, S.; Terashima, M.; Masuda, T., Cell-type-

specific repression of the maspin gene is disrupted frequently by demethylation at the 

promoter region in gastric intestinal metaplasia and cancer cells. The American journal of 

pathology 2003, 163 (5), 1911-1919. 

125. Iacobuzio-Donahue, C. A.; Maitra, A.; Olsen, M.; Lowe, A. W.; Van Heek, N. T.; 

Rosty, C.; Walter, K.; Sato, N.; Parker, A.; Ashfaq, R., Exploration of global gene 

expression patterns in pancreatic adenocarcinoma using cDNA microarrays. The American 

journal of pathology 2003, 162 (4), 1151-1162. 

126. Oshimo, Y.; Nakayama, H.; Ito, R.; Kitadai, Y.; Yoshida, K.; Chayama, K.; Yasui, 

W., Promoter methylation of cyclin D2 gene in gastric carcinoma. International journal of 

oncology 2003, 23 (6), 1663-1670. 

127. Sato, N.; Maitra, A.; Fukushima, N.; van Heek, N. T.; Matsubayashi, H.; Iacobuzio-

Donahue, C. A.; Rosty, C.; Goggins, M., Frequent hypomethylation of multiple genes 

overexpressed in pancreatic ductal adenocarcinoma. Cancer Research 2003, 63 (14), 4158-

4166. 

128. Susan, J. C.; Harrison, J.; Paul, C. L.; Frommer, M., High sensitivity mapping of 

methylated cytosines. Nucleic acids research 1994, 22 (15), 2990-2997. 

129. Herman, J. G.; Graff, J. R.; Myöhänen, S.; Nelkin, B. D.; Baylin, S. B., 

Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. 

Proceedings of the National Academy of Sciences 1996, 93 (18), 9821-9826. 



www.manaraa.com

 

165 

 

130. Eads, C. A.; Danenberg, K. D.; Kawakami, K.; Saltz, L. B.; Blake, C.; Shibata, D.; 

Danenberg, P. V.; Laird, P. W., MethyLight: a high-throughput assay to measure DNA 

methylation. Nucleic acids research 2000, 28 (8), e32-00. 

131. Fraga, M. F.; Esteller, M., DNA methylation: a profile of methods and applications. 

Biotechniques 2002, 33 (3), 632-649. 

132. Weber, M.; Davies, J. J.; Wittig, D.; Oakeley, E. J.; Haase, M.; Lam, W. L.; 

Schuebeler, D., Chromosome-wide and promoter-specific analyses identify sites of 

differential DNA methylation in normal and transformed human cells. Nature genetics 

2005, 37 (8), 853-862. 

133. Keshet, I.; Schlesinger, Y.; Farkash, S.; Rand, E.; Hecht, M.; Segal, E.; Pikarski, 

E.; Young, R. A.; Niveleau, A.; Cedar, H., Evidence for an instructive mechanism of de 

novo methylation in cancer cells. Nature genetics 2006, 38 (2), 149-153. 

134. Khulan, B.; Thompson, R. F.; Ye, K.; Fazzari, M. J.; Suzuki, M.; Stasiek, E.; 

Figueroa, M. E.; Glass, J. L.; Chen, Q.; Montagna, C., Comparative isoschizomer profiling 

of cytosine methylation: the HELP assay. Genome research 2006, 16 (8), 1046-1055. 

135. Shim, J.; Rivera, J. A.; Bashir, R., Electron beam induced local crystallization of 

HfO 2 nanopores for biosensing applications. Nanoscale 2013, 5 (22), 10887-10893. 

136. Tahiliani, M.; Koh, K. P.; Shen, Y.; Pastor, W. A.; Bandukwala, H.; Brudno, Y.; 

Agarwal, S.; Iyer, L. M.; Liu, D. R.; Aravind, L., Conversion of 5-methylcytosine to 5-

hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324 

(5929), 930-935. 

137. Ito, S.; D’Alessio, A. C.; Taranova, O. V.; Hong, K.; Sowers, L. C.; Zhang, Y., 

Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass 

specification. Nature 2010, 466 (7310), 1129-1133. 

138. Zhang, H.; Zhang, X.; Clark, E.; Mulcahey, M.; Huang, S.; Shi, Y. G., TET1 is a 

DNA-binding protein that modulates DNA methylation and gene transcription via 

hydroxylation of 5-methylcytosine. Cell research 2010, 20 (12), 1390-1393. 

139. Wu, H.; Zhang, Y., Mechanisms and functions of Tet protein-mediated 5-

methylcytosine oxidation. Genes & development 2011, 25 (23), 2436-2452. 

140. Szwagierczak, A.; Bultmann, S.; Schmidt, C. S.; Spada, F.; Leonhardt, H., 

Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic 

acids research 2010, 38 (19), e181-e181. 

141. Wossidlo, M.; Nakamura, T.; Lepikhov, K.; Marques, C. J.; Zakhartchenko, V.; 

Boiani, M.; Arand, J.; Nakano, T.; Reik, W.; Walter, J., 5-Hydroxymethylcytosine in the 

mammalian zygote is linked with epigenetic reprogramming. Nature communications 

2011, 2, 241. 



www.manaraa.com

 

166 

 

142. Booth, M. J.; Branco, M. R.; Ficz, G.; Oxley, D.; Krueger, F.; Reik, W.; 

Balasubramanian, S., Quantitative sequencing of 5-methylcytosine and 5-

hydroxymethylcytosine at single-base resolution. Science 2012, 336 (6083), 934-937. 

143. Shankar, T. S.; Willems, L., Epigenetic modulators mitigate angiogenesis through 

a complex transcriptomic network. Vascular pharmacology 2014, 60 (2), 57-66. 

144. Fu, Y.; He, C., Nucleic acid modifications with epigenetic significance. Current 

opinion in chemical biology 2012, 16 (5), 516-524. 

145. Lian, C. G.; Xu, Y.; Ceol, C.; Wu, F.; Larson, A.; Dresser, K.; Xu, W.; Tan, L.; Hu, 

Y.; Zhan, Q., Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. 

Cell 2012, 150 (6), 1135-1146. 

146. Yu, M.; Hon, G. C.; Szulwach, K. E.; Song, C.-X.; Zhang, L.; Kim, A.; Li, X.; Dai, 

Q.; Shen, Y.; Park, B., Base-resolution analysis of 5-hydroxymethylcytosine in the 

mammalian genome. Cell 2012, 149 (6), 1368-1380. 

147. Wanunu, M.; Cohen-Karni, D.; Johnson, R. R.; Fields, L.; Benner, J.; Peterman, 

N.; Zheng, Y.; Klein, M. L.; Drndic, M., Discrimination of Methylcytosine from 

Hydroxymethylcytosine in DNA Molecules. Journal of the American Chemical Society 

2011, 133 (3), 486-492. 

148. Laszlo, A. H.; Derrington, I. M.; Brinkerhoff, H.; Langford, K. W.; Nova, I. C.; 

Samson, J. M.; Bartlett, J. J.; Pavlenok, M.; Gundlach, J. H., Detection and mapping of 5-

methylcytosine and 5-hydroxymethylcytosine with nanopore MspA. Proceedings of the 

National Academy of Sciences 2013, 110 (47), 18904-18909. 

149. Wescoe, Z. L.; Schreiber, J.; Akeson, M., Nanopores discriminate among five C5-

cytosine variants in DNA. Journal of the American Chemical Society 2014, 136 (47), 

16582-16587. 

150. Nguyen, C. T.; Gonzales, F. A.; Jones, P. A., Altered chromatin structure associated 

with methylation-induced gene silencing in cancer cells: correlation of accessibility, 

methylation, MeCP2 binding and acetylation. Nucleic acids research 2001, 29 (22), 4598-

4606. 

151. Fahrner, J. A.; Eguchi, S.; Herman, J. G.; Baylin, S. B., Dependence of histone 

modifications and gene expression on DNA hypermethylation in cancer. Cancer research 

2002, 62 (24), 7213-7218. 

152. Ballestar, E.; Paz, M. F.; Valle, L.; Wei, S.; Fraga, M. F.; Espada, J.; Cigudosa, J. 

C.; Huang, T. H. M.; Esteller, M., Methyl‐CpG binding proteins identify novel sites of 

epigenetic inactivation in human cancer. The EMBO journal 2003, 22 (23), 6335-6345. 

 



www.manaraa.com

 

167 

 

153. Fraga, M. F.; Ballestar, E.; Villar-Garea, A.; Boix-Chornet, M.; Espada, J.; Schotta, 

G.; Bonaldi, T.; Haydon, C.; Ropero, S.; Petrie, K., Loss of acetylation at Lys16 and 

trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature 

genetics 2005, 37 (4), 391-400. 

154. Esteller, M., Cancer epigenomics: DNA methylomes and histone-modification 

maps. Nature Reviews Genetics 2007, 8 (4), 286-298. 

155. Wang, Y.; Fischle, W.; Cheung, W.; Jacobs, S.; Khorasanizadeh, S.; Allis, C. D. In 

Beyond the double helix: writing and reading the histone code, Novartis Foundation 

Symposium, Chichester; New York; John Wiley; 1999: 2004; pp 3-21. 

156. Dobosy, J.; Selker, E., Emerging connections between DNA methylation and 

histone acetylation. Cellular and Molecular Life Sciences CMLS 2001, 58 (5-6), 721-727. 

157. Wade, P. A., Methyl CpG‐binding proteins and transcriptional repression. 

Bioessays 2001, 23 (12), 1131-1137. 

158. Soni, G. V.; Dekker, C., Detection of nucleosomal substructures using solid-state 

nanopores. Nano letters 2012, 12 (6), 3180-3186. 

159. Andrey Ivankin, S. C., Fast, Label-Free Force Spectroscopy of Histone-DNA 

Interactions in Individual Nucleosomes Using Nanopores. Journal of the American 

Chemical Society 2016, 15350-15352. 

160. Langecker, M.; Ivankin, A.; Carson, S.; Kinney, S. R.; Simmel, F. C.; Wanunu, M., 

Nanopores Suggest a Negligible Influence of CpG Methylation on Nucleosome Packaging 

and Stability. Nano letters 2014, 15 (1), 783-790. 

161. Wanunu, M.; Sutin, J.; Meller, A., DNA profiling using solid-state nanopores: 

detection of DNA-binding molecules. Nano letters 2009, 9 (10), 3498-3502. 

162. Ivankin, A.; Carson, S.; Kinney, S. R.; Wanunu, M., Fast, Label-Free Force 

Spectroscopy of Histone–DNA Interactions in Individual Nucleosomes Using Nanopores. 

Journal of the American Chemical Society 2013, 135 (41), 15350-15352. 

163. Suzuki, H.; Gabrielson, E.; Chen, W.; Anbazhagan, R.; van Engeland, M.; 

Weijenberg, M. P.; Herman, J. G.; Baylin, S. B., A genomic screen for genes upregulated 

by demethylation and histone deacetylase inhibition in human colorectal cancer. Nature 

genetics 2002, 31 (2), 141-149. 

164. Yamashita, K.; Upadhyay, S.; Osada, M.; Hoque, M. O.; Xiao, Y.; Mori, M.; Sato, 

F.; Meltzer, S. J.; Sidransky, D., Pharmacologic unmasking of epigenetically silenced 

tumor suppressor genes in esophageal squamous cell carcinoma. Cancer cell 2002, 2 (6), 

485-495. 

165. Carthew, R. W.; Sontheimer, E. J., Origins and Mechanisms of miRNAs and 

siRNAs. Cell 2009, 136 (4), 642-55. 



www.manaraa.com

 

168 

 

166. Winter, J.; Jung, S.; Keller, S.; Gregory, R. I.; Diederichs, S., Many roads to 

maturity: microRNA biogenesis pathways and their regulation. Nature cell biology 2009, 

11 (3), 228-234. 

167. Jansson, M. D.; Lund, A. H., MicroRNA and cancer. Molecular oncology 2012, 6 

(6), 590-610. 

168. Chen, C.; Ridzon, D. A.; Broomer, A. J.; Zhou, Z.; Lee, D. H.; Nguyen, J. T.; 

Barbisin, M.; Xu, N. L.; Mahuvakar, V. R.; Andersen, M. R., Real-time quantification of 

microRNAs by stem–loop RT–PCR. Nucleic acids research 2005, 33 (20), e179-e179. 

169. Hunt, E. A.; Goulding, A. M.; Deo, S. K., Direct detection and quantification of 

microRNAs. Analytical biochemistry 2009, 387 (1), 1. 

170. Li, W.; Ruan, K., MicroRNA detection by microarray. Anal Bioanal Chem 2009, 

394 (4), 1117-24. 

171. Yendamuri, S.; Kratzke, R., MicroRNA biomarkers in lung cancer: MiRacle or 

quagMiRe? Translational Research 2011, 157 (4), 209-215. 

172. Wang, Y.; Zheng, D.; Tan, Q.; Wang, M. X.; Gu, L. Q., Nanopore-based detection 

of circulating microRNAs in lung cancer patients. Nat Nanotechnol 2011, 6 (10), 668-74. 

173. Silvestri, G. A.; Alberg, A. J.; Ravenel, J., The changing epidemiology of lung 

cancer with a focus on screening. Bmj 2009, 339 (6), 30-53. 

174. Yanaihara, N.; Caplen, N.; Bowman, E.; Seike, M.; Kumamoto, K.; Yi, M.; 

Stephens, R. M.; Okamoto, A.; Yokota, J.; Tanaka, T., Unique microRNA molecular 

profiles in lung cancer diagnosis and prognosis. Cancer cell 2006, 9 (3), 189-198. 

175. Patnaik, S. K.; Kannisto, E.; Knudsen, S.; Yendamuri, S., Evaluation of microRNA 

expression profiles that may predict recurrence of localized stage I non–small cell lung 

cancer after surgical resection. Cancer research 2010, 70 (1), 36-45. 

176. Wanunu, M.; Dadosh, T.; Ray, V.; Jin, J.; McReynolds, L.; Drndić, M., Rapid 

electronic detection of probe-specific microRNAs using thin nanopore sensors. Nature 

nanotechnology 2010, 5 (11), 807-814. 

177. Jin, S. G.; Kadam, S.; Pfeifer, G. P., Examination of the specificity of DNA 

methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. 

Nucleic Acids Res 2010, 38 (11), e125. 

178. Estevez-Torres, A.; Baigl, D., DNA compaction: fundamentals and applications. 

Soft Matter 2011, 7 (15), 6746-6756. 

179. Bloomfield, V. A., Condensation of DNA by multivalent cations: considerations on 

mechanism. Biopolymers 1991, 31 (13), 1471-1481. 



www.manaraa.com

 

169 

 

180. Zinchenko, A. A.; Yoshikawa, K., Na+ shows a markedly higher potential than K+ 

in DNA compaction in a crowded environment. Biophysical journal 2005, 88 (6), 4118-

4123. 

181. Yoshikawa, K.; Takahashi, M.; Vasilevskaya, V.; Khokhlov, A., Large discrete 

transition in a single DNA molecule appears continuous in the ensemble. Physical review 

letters 1996, 76 (16), 3029. 

182. Akitaya, T.; Seno, A.; Nakai, T.; Hazemoto, N.; Murata, S.; Yoshikawa, K., Weak 

interaction induces an ON/OFF switch, whereas strong interaction causes gradual change: 

folding transition of a long duplex DNA chain by poly-L-lysine. Biomacromolecules 2007, 

8 (1), 273-278. 

183. Vasilevskaya, V.; Khokhlov, A.; Matsuzawa, Y.; Yoshikawa, K., Collapse of single 

DNA molecule in poly (ethylene glycol) solutions. The Journal of chemical physics 1995, 

102 (16), 6595-6602. 

184. Zinchenko, A. A.; Yoshikawa, K.; Baigl, D., Compaction of single-chain DNA by 

histone-inspired nanoparticles. Physical review letters 2005, 95 (22), 228101. 

185. Zinchenko, A. A.; Sakaue, T.; Araki, S.; Yoshikawa, K.; Baigl, D., Single-chain 

compaction of long duplex DNA by cationic nanoparticles: modes of interaction and 

comparison with chromatin. The Journal of Physical Chemistry B 2007, 111 (11), 3019-

3031. 

186. Mel'nikov, S. M.; Sergeyev, V. G.; Yoshikawa, K., Discrete coil-globule transition 

of large DNA induced by cationic surfactant. Journal of the American Chemical Society 

1995, 117 (9), 2401-2408. 

187. Sollogoub, M.; Guieu, S.; Geoffroy, M.; Yamada, A.; Estévez‐Torres, A.; 

Yoshikawa, K.; Baigl, D., Photocontrol of Single‐Chain DNA Conformation in Cell‐
Mimicking Microcompartments. ChemBioChem 2008, 9 (8), 1201-1206. 

188. Dias, R.; Mel'nikov, S.; Lindman, B.; Miguel, M. G., DNA phase behavior in the 

presence of oppositely charged surfactants. Langmuir 2000, 16 (24), 9577-9583. 

189. Livolant, F.; Leforestier, A., Condensed phases of DNA: structures and phase 

transitions. Progress in Polymer Science 1996, 21 (6), 1115-1164. 

190. Robinson, C., Liquid-crystalline structures in polypeptide solutions. Tetrahedron 

1961, 13 (1-3), 219-234. 

191. Robinson, C., The cholesteric phase in polypeptide solutions and biological 

structures. Molecular Crystals and Liquid Crystals 1966, 1 (4), 467-494. 

192. Luzzati, V.; Nicolaieff, A., Etude par diffusion des rayons X aux petits angles des 

gels d’acide désoxyribonucléique et de nucléoprotéines:(note préliminaire). Journal of 

Molecular Biology 1959, 1 (2), 127IN4-133IN5. 



www.manaraa.com

 

170 

 

193. Jmdan, C.; Lerman, L.; Venable, J., Structure and circular dichroism of DNA in 

concentrated polymer solutions. Nature 1972, 236 (64), 67-70. 

194. Zimmerman, S. B., Macromolecular crowding effects on macromolecular 

interactions: some implications for genome structure and function. Biochimica et 

Biophysica Acta (BBA)-Gene Structure and Expression 1993, 1216 (2), 175-185. 

195. Maniatis, T.; Venable, J. H.; Lerman, L. S., The structure of Ψ DNA. Journal of 

molecular biology 1974, 84 (1), 37IN157-5664. 

196. Shim, J. W.; Gu, L.-Q., Encapsulating a single G-quadruplex aptamer in a protein 

nanocavity. The Journal of Physical Chemistry B 2008, 112 (28), 8354-8360. 

197. Gouaux, E., α-Hemolysin fromStaphylococcus aureus: an archetype of β-barrel, 

channel-forming toxins. Journal of structural biology 1998, 121 (2), 110-122. 

198. Braha, O.; Walker, B.; Cheley, S.; Kasianowicz, J. J.; Song, L.; Gouaux, J. E.; 

Bayley, H., Designed protein pores as components for biosensors. Chemistry & biology 

1997, 4 (7), 497-505. 

199. Chen, C.; Li, M.; Xing, Y.; Li, Y.; Joedecke, C.-C.; Jin, J.; Yang, Z.; Liu, D., Study 

of pH-induced folding and unfolding kinetics of the DNA i-motif by stopped-flow circular 

dichroism. Langmuir 2012, 28 (51), 17743-17748. 

200. Kypr, J.; Kejnovská, I.; Renčiuk, D.; Vorlíčková, M., Circular dichroism and 

conformational polymorphism of DNA. Nucleic acids research 2009, 37 (6), 1713-1725. 

201. Choi, J.; Kim, S.; Tachikawa, T.; Fujitsuka, M.; Majima, T., pH-induced 

intramolecular folding dynamics of i-motif DNA. Journal of the American Chemical 

Society 2011, 133 (40), 16146-16153. 

202. Vorlíčková, M.; Kejnovská, I.; Bednářová, K.; Renčiuk, D.; Kypr, J., Circular 

dichroism spectroscopy of DNA: from duplexes to quadruplexes. Chirality 2012, 24 (9), 

691-698. 

203. Plesa, C.; Verschueren, D.; Pud, S.; van der Torre, J.; Ruitenberg, J. W.; Witteveen, 

M. J.; Jonsson, M. P.; Grosberg, A. Y.; Rabin, Y.; Dekker, C., Direct observation of DNA 

knots using a solid-state nanopore. Nature nanotechnology 2016, 11 (12), 1093-1097. 

204. Phan, A. T.; Guéron, M.; Leroy, J.-L., The solution structure and internal motions 

of a fragment of the cytidine-rich strand of the human telomere. Journal of molecular 

biology 2000, 299 (1), 123-144. 

205. Zhao, Y.; Zeng, Z. x.; Kan, Z. y.; Hao, Y. h.; Tan, Z., The Folding and Unfolding 

Kinetics of the i‐Motif Structure Formed by the C‐Rich Strand of Human Telomere DNA. 

ChemBioChem 2005, 6 (11), 1957-1960. 



www.manaraa.com

 

171 

 

206. Manzini, G.; Yathindra, N.; Xodo, L., Evidence for intramolecularly folded i-DNA 

structures in biologically relevant CCC-repeat sequences. Nucleic acids research 1994, 22 

(22), 4634-4640. 

207. Savelyev, A.; Papoian, G. A., Electrostatic, steric, and hydration interactions favor 

Na+ condensation around DNA compared with K+. Journal of the American Chemical 

Society 2006, 128 (45), 14506-14518. 

208. Rouzina, I.; Bloomfield, V. A., Macroion attraction due to electrostatic correlation 

between screening counterions. 1. Mobile surface-adsorbed ions and diffuse ion cloud. The 

Journal of Physical Chemistry 1996, 100 (23), 9977-9989. 

209. Rodgers, M.; Armentrout, P., Noncovalent interactions of nucleic acid bases 

(uracil, thymine, and adenine) with alkali metal ions. Threshold collision-induced 

dissociation and theoretical studies. Journal of the American Chemical Society 2000, 122 

(35), 8548-8558. 

210. Burda, J. V.; Šponer, J.; Hobza, P., Ab initio study of the interaction of guanine and 

adenine with various mono-and bivalent metal cations (Li+, Na+, K+, Rb+, Cs+; Cu+, 

Ag+, Au+; Mg2+, Ca2+, Sr2+, Ba2+; Zn2+, Cd2+, and Hg2+). The Journal of Physical 

Chemistry 1996, 100 (17), 7250-7255. 

211. Cerda, B. A.; Wesdemiotis, C., Li+, Na+, and K+ binding to the DNA and RNA 

nucleobases. Bond energies and attachment sites from the dissociation of metal ion-bound 

heterodimers. Journal of the American Chemical Society 1996, 118 (47), 11884-11892. 

212. Hoyau, S.; Norrman, K.; McMahon, T.; Ohanessian, G., A quantitative basis for a 

scale of Na+ affinities of organic and small biological molecules in the gas phase. Journal 

of the American Chemical Society 1999, 121 (38), 8864-8875. 

213. de Martimprey, H.; Vauthier, C.; Malvy, C.; Couvreur, P., Polymer nanocarriers 

for the delivery of small fragments of nucleic acids: Oligonucleotides and siRNA. Eur. J. 

Pharm. Biopharm. 2009, 71 (3), 490--504. 

214. Merdan, T.; Kopec̆ek, J.; Kissel, T., Prospects for cationic polymers in gene and 

oligonucleotide therapy against cancer. Adv. Drug Delivery Rev. 2002, 54 (5), 715--758. 

215. Vinogradov, S. V.; Batrakova, E. V.; Li, S.; Kabanov, A. V., Mixed Polymer 

Micelles of Amphiphilic and Cationic Copolymers for Delivery of Antisense 

Oligonucleotides. J. Drug Targeting 2004, 12 (8), 517--526. 

216. Lu, X.; Tran, T.-H.; Jia, F.; Tan, X.; Davis, S.; Krishnan, S.; Amiji, M. M.; Zhang, 

K., Providing Oligonucleotides with Steric Selectivity by Brush-Polymer-Assisted 

Compaction. J. Am. Chem. Soc. 2015, 137 (39), 12466--12469. 

217. Huppert, J. L.; Balasubramanian, S., Prevalence of quadruplexes in the human 

genome. Nucleic acids research 2005, 33 (9), 2908-2916. 



www.manaraa.com

 

172 

 

218. Armas, P.; David, A.; Calcaterra, N. B., Transcriptional control by G-quadruplexes: 

In vivo roles and perspectives for specific intervention. Transcription 2017, 8 (1), 21-25. 

219. Rhodes, D.; Lipps, H. J., G-quadruplexes and their regulatory roles in biology. 

Nucleic acids research 2015, 43 (18), 8627-8637. 

220. David, A. P.; Margarit, E.; Domizi, P.; Banchio, C.; Armas, P.; Calcaterra, N. B., 

G-quadruplexes as novel cis-elements controlling transcription during embryonic 

development. Nucleic acids research 2016, 44 (9), 4163-4173. 

221. Fleming, A. M.; Zhu, J.; Ding, Y.; Burrows, C. J., 8-Oxo-7, 8-dihydroguanine in 

the context of a gene promoter G-quadruplex is an on–off switch for transcription. ACS 

chemical biology 2017, 12 (9), 2417-2426. 

222. Neidle, S., Quadruplex nucleic acids as targets for anticancer therapeutics. Nature 

Reviews Chemistry 2017, 1 (5), 0041. 

223. d'Auriol, L.; Mattei, M.-G.; Andre, C.; Galibert, F., Localization of the human c-

kit protooncogene on the q11–q12 region of chromosome 4. Human genetics 1988, 78 (4), 

374-376. 

224. Yarden, Y.; Kuang, W.-J.; Yang‐Feng, T.; Coussens, L.; Munemitsu, S.; Dull, T.; 

Chen, E.; Schlessinger, J.; Francke, U.; Ullrich, A., Human proto‐oncogene c‐kit: a new 

cell surface receptor tyrosine kinase for an unidentified ligand. The EMBO journal 1987, 

6 (11), 3341-3351. 

225. Yamamoto, K.; Tojo, A.; Aoki, N.; Shibuya, M., Characterization of the Promoter 

Region of the Human c‐kit Proto‐oncogene. Japanese journal of cancer research 1993, 84 

(11), 1136-1144. 

226. Kotar, A.; Rigo, R.; Sissi, C.; Plavec, J., Two-quartet kit* G-quadruplex is formed 

via double-stranded pre-folded structure. Nucleic acids research 2018, 47 (5), 2641-2653. 

227. Metcalfe, D. D., Mast cells and mastocytosis. Blood 2008, 112 (4), 946-956. 

228. Gregory-Bryson, E.; Bartlett, E.; Kiupel, M.; Hayes, S.; Yuzbasiyan-Gurkan, V., 

Canine and human gastrointestinal stromal tumors display similar mutations in c-KIT exon 

11. BMC cancer 2010, 10 (1), 559. 

229. Li, X.; Heyer, W. D., Homologous recombination in DNA repair and DNA damage 

tolerance. Cell research 2008, 18 (1), 99-113. 

230. Yamamoto, K.; Tojo, A.; Aoki, N.; Shibuya, M., Characterization of the promoter 

region of the human c-kit proto-oncogene. Japanese journal of cancer research : Gann 

1993, 84 (11), 1136-44. 

231. Balasubramanian, S.; Hurley, L. H.; Neidle, S., Targeting G-quadruplexes in gene 

promoters: a novel anticancer strategy? Nature reviews Drug discovery 2011, 10 (4), 261. 



www.manaraa.com

 

173 

 

232. Collie, G. W.; Parkinson, G. N., The application of DNA and RNA G-quadruplexes 

to therapeutic medicines. Chemical Society Reviews 2011, 40 (12), 5867-5892. 

233. Xu, H.; Di Antonio, M.; McKinney, S.; Mathew, V.; Ho, B.; O’Neil, N. J.; Santos, 

N. D.; Silvester, J.; Wei, V.; Garcia, J.; Kabeer, F.; Lai, D.; Soriano, P.; Banáth, J.; Chiu, 

D. S.; Yap, D.; Le, D. D.; Ye, F. B.; Zhang, A.; Thu, K.; Soong, J.; Lin, S.-c.; Tsai, A. H. 

C.; Osako, T.; Algara, T.; Saunders, D. N.; Wong, J.; Xian, J.; Bally, M. B.; Brenton, J. D.; 

Brown, G. W.; Shah, S. P.; Cescon, D.; Mak, T. W.; Caldas, C.; Stirling, P. C.; Hieter, P.; 

Balasubramanian, S.; Aparicio, S., CX-5461 is a DNA G-quadruplex stabilizer with 

selective lethality in BRCA1/2 deficient tumours. Nature Communications 2017, 8, 14432. 

234. Andrews, J. O.; Conway, W.; Cho, W. K.; Narayanan, A.; Spille, J. H.; Jayanth, N.; 

Inoue, T.; Mullen, S.; Thaler, J.; Cissé, I. I., qSR: a quantitative super-resolution analysis 

tool reveals the cell-cycle dependent organization of RNA Polymerase I in live human 

cells. Scientific Reports 2018, 8 (1), 7424. 

235. Yoshida, K.; Miki, Y., Role of BRCA1 and BRCA2 as regulators of DNA repair, 

transcription, and cell cycle in response to DNA damage. Cancer science 2004, 95 (11), 

866-71. 

236. Shim, J.; Gu, L.-Q., Encapsulating a single G-quadruplex aptamer in a protein 

nanocavity. The Journal of Physical Chemistry B 2008, 112 (28), 8354-8360. 

237. Vercoutere, W.; Winters-Hilt, S.; Olsen, H.; Deamer, D.; Haussler, D.; Akeson, M., 

Rapid discrimination among individual DNA hairpin molecules at single-nucleotide 

resolution using an ion channel. Nature Biotechnology 2001, 19, 248. 

238. Vu, T.; Borgesi, J.; Soyring, J.; D'Alia, M.; Davidson, S.-L.; Shim, J., Employing 

LiCl salt gradient in the wild-type α-hemolysin nanopore to slow down DNA translocation 

and detect methylated cytosine. Nanoscale 2019, 11 (21), 10536-10545. 

239. Meller, A.; Nivon, L.; Brandin, E.; Golovchenko, J.; Branton, D., Rapid nanopore 

discrimination between single polynucleotide molecules. Proceedings of the National 

Academy of Sciences 2000, 97 (3), 1079-1084. 

240. Bochman, M. L.; Paeschke, K.; Zakian, V. A., DNA secondary structures: stability 

and function of G-quadruplex structures. Nature Reviews Genetics 2012, 13 (11), 770. 

241. Largy, E.; Mergny, J.-L.; Gabelica, V., Role of alkali metal ions in G-quadruplex 

nucleic acid structure and stability. In The Alkali Metal Ions: Their Role for Life, Springer: 

2016; pp 203-258. 

242. Misra, V. K.; Draper, D. E., On the role of magnesium ions in RNA stability. 

Biopolymers: Original Research on Biomolecules 1998, 48 (2‐3), 113-135. 

243. Gu, J.; Leszczynski, J., Origin of Na+/K+ selectivity of the guanine tetraplexes in 

water: the theoretical rationale. The Journal of Physical Chemistry A 2002, 106 (3), 529-

532. 



www.manaraa.com

 

174 

 

244. Hud, N. V.; Smith, F. W.; Anet, F. A.; Feigon, J., The selectivity for K+ versus Na+ 

in DNA quadruplexes is dominated by relative free energies of hydration: a thermodynamic 

analysis by 1H NMR. Biochemistry 1996, 35 (48), 15383-15390. 

245. Gu, L.-Q.; Braha, O.; Conlan, S.; Cheley, S.; Bayley, H., Stochastic sensing of 

organic analytes by a pore-forming protein containing a molecular adapter. Nature 1999, 

398 (6729), 686-690. 

246. Ashman, L. K.; Griffith, R., Therapeutic targeting of c-KIT in cancer. Expert 

opinion on investigational drugs 2013, 22 (1), 103-115. 

247. Lennartsson, J.; Rönnstrand, L., Stem cell factor receptor/c-Kit: from basic science 

to clinical implications. Physiological reviews 2012, 92 (4), 1619-1649. 

248. Islam, B.; Stadlbauer, P.; Krepl, M.; Koca, J.; Neidle, S.; Haider, S.; Sponer, J., 

Extended molecular dynamics of a c-kit promoter quadruplex. Nucleic acids research 

2015, 43 (18), 8673-8693. 

249. Strick, T.; Bensimon, D.; Croquette, V., Micro-mechanical measurement of the 

torsional modulus of DNA. In Structural Biology and Functional Genomics, Springer: 

1999; pp 87-96. 

250. Danilowicz, C.; Coljee, V. W.; Bouzigues, C.; Lubensky, D. K.; Nelson, D. R.; 

Prentiss, M., DNA unzipped under a constant force exhibits multiple metastable 

intermediates. Proceedings of the National Academy of Sciences 2003, 100 (4), 1694-1699. 

251. Huguet, J. M.; Forns, N.; Ritort, F., Statistical properties of metastable 

intermediates in DNA unzipping. Physical review letters 2009, 103 (24), 248106. 

252. Xu, H.; Di Antonio, M.; McKinney, S.; Mathew, V.; Ho, B.; O’Neil, N. J.; Dos 

Santos, N.; Silvester, J.; Wei, V.; Garcia, J., CX-5461 is a DNA G-quadruplex stabilizer 

with selective lethality in BRCA1/2 deficient tumours. Nature communications 2017, 8 

(1), 1-18. 

253. Marathias, V. M.; Bolton, P. H., Structures of the potassium-saturated, 2: 1, and 

intermediate, 1: 1, forms of a quadruplex DNA. Nucleic acids research 2000, 28 (9), 1969-

1977. 

254. Latysheva, N. S.; Babu, M. M., Discovering and understanding oncogenic gene 

fusions through data intensive computational approaches. Nucleic acids research 2016, 44 

(10), 4487-4503. 

255. Esteller, M.; Toyota, M.; Sanchez-Cespedes, M.; Capella, G.; Peinado, M. A.; 

Watkins, D. N.; Issa, J.-P. J.; Sidransky, D.; Baylin, S. B.; Herman, J. G., Inactivation of 

the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter 

hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. 

Cancer research 2000, 60 (9), 2368-2371. 



www.manaraa.com

 

175 

 

256. Mikeska, T.; Bock, C.; Do, H.; Dobrovic, A., DNA methylation biomarkers in 

cancer: progress towards clinical implementation. Expert review of molecular diagnostics 

2012, 12 (5), 473-487. 

257. Fearon, E. R.; Vogelstein, B., A genetic model for colorectal tumorigenesis. Cell 

1990, 61 (5), 759-767. 

258. Baylln, S. B.; Herman, J. G.; Graff, J. R.; Vertino, P. M.; Issa, J.-P., Alterations in 

DNA methylation: a fundamental aspect of neoplasia. Advances in cancer research 1997, 

72, 141-196. 

259. Herman, J. G.; Baylin, S. B., Gene silencing in cancer in association with promoter 

hypermethylation. New England Journal of Medicine 2003, 349 (21), 2042-2054. 

260. Cantara, W. A.; Crain, P. F.; Rozenski, J.; McCloskey, J. A.; Harris, K. A.; Zhang, 

X.; Vendeix, F. A.; Fabris, D.; Agris, P. F., The RNA modification database, RNAMDB: 

2011 update. Nucleic acids research 2010, 39 (suppl_1), D195-D201. 

261. Squires, J. E.; Patel, H. R.; Nousch, M.; Sibbritt, T.; Humphreys, D. T.; Parker, B. 

J.; Suter, C. M.; Preiss, T., Widespread occurrence of 5-methylcytosine in human coding 

and non-coding RNA. Nucleic acids research 2012, 40 (11), 5023-5033. 

262. Trixl, L.; Lusser, A., The dynamic RNA modification 5‐methylcytosine and its 

emerging role as an epitranscriptomic mark. Wiley Interdisciplinary Reviews: RNA 2019, 

10 (1), e1510. 

263. Amort, T.; Rieder, D.; Wille, A.; Khokhlova-Cubberley, D.; Riml, C.; Trixl, L.; Jia, 

X.-Y.; Micura, R.; Lusser, A., Distinct 5-methylcytosine profiles in poly (A) RNA from 

mouse embryonic stem cells and brain. Genome biology 2017, 18 (1), 1. 

264. Toiyama, Y.; Okugawa, Y.; Tanaka, K.; Araki, T.; Uchida, K.; Hishida, A.; Uchino, 

M.; Ikeuchi, H.; Hirota, S.; Kusunoki, M., A panel of methylated microRNA biomarkers 

for identifying high-risk patients with ulcerative colitis-associated colorectal cancer. 

Gastroenterology 2017, 153 (6), 1634-1646. e8. 

265. Miura, F.; Enomoto, Y.; Dairiki, R.; Ito, T., Amplification-free whole-genome 

bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic acids research 2012, 40 

(17), e136-e136. 

266. Schatz, M. C., Nanopore sequencing meets epigenetics. Nature methods 2017, 14 

(4), 347. 

267. Gigante, S.; Gouil, Q.; Lucattini, A.; Keniry, A.; Beck, T.; Tinning, M.; Gordon, 

L.; Woodruff, C.; Speed, T. P.; Blewitt, M., Using long-read sequencing to detect imprinted 

DNA methylation. bioRxiv 2019, 445924. 

 



www.manaraa.com

 

176 

 

268. Shim, J.; Humphreys, G. I.; Venkatesan, B. M.; Munz, J. M.; Zou, X.; Sathe, C.; 

Schulten, K.; Kosari, F.; Nardulli, A. M.; Vasmatzis, G.; Bashir, R., Detection and 

quantification of methylation in DNA using solid-state nanopores. Scientific reports 2013, 

3, 1389. 

269. de Zoysa, R. S. S.; Jayawardhana, D. A.; Zhao, Q.; Wang, D.; Armstrong, D. W.; 

Guan, X., Slowing DNA translocation through nanopores using a solution containing 

organic salts. The Journal of Physical Chemistry B 2009, 113 (40), 13332-13336. 

270. Piguet, F.; Discala, F.; Breton, M.-F.; Pelta, J.; Bacri, L.; Oukhaled, A., 

Electroosmosis through α-hemolysin that depends on alkali cation type. J. Phys. Chem. 

Lett 2014, 5 (24), 4362-4367. 

271. Kowalczyk, S. W.; Wells, D. B.; Aksimentiev, A.; Dekker, C., Slowing down DNA 

translocation through a nanopore in lithium chloride. Nano Letters 2012, 12 (2), 1038-

1044. 

272. Stellwagen, E.; Dong, Q.; Stellwagen, N. C., Monovalent cations affect the free 

solution mobility of DNA by perturbing the hydrogen-bonded structure of water. 

Biopolymers 2005, 78 (2), 62-68. 

273. Stellwagen, E.; Stellwagen, N. C., The free solution mobility of DNA in Tris‐
acetate‐EDTA buffers of different concentrations, with and without added NaCl. 

Electrophoresis 2002, 23 (12), 1935-1941. 

274. Stellwagen, E.; Stellwagen, N. C., Probing the electrostatic shielding of DNA with 

capillary electrophoresis. Biophysical journal 2003, 84 (3), 1855-1866. 

275. Wanunu, M.; Cohen-Karni, D.; Johnson, R. R.; Fields, L.; Benner, J.; Peterman, 

N.; Zheng, Y.; Klein, M. L.; Drndic, M., Discrimination of Methylcytosine from 

Hydroxymethylcytosine in DNA Molecules. J. Am. Chem. Soc. 2011, 133 (3), 486--492. 

276. Marcus, Y., Ion properties. Marcel Dekker: New York, 1997. 

277. McFail-Isom, L.; Sines, C. C.; Williams, L. D., DNA structure: cations in charge? 

Current opinion in structural biology 1999, 9 (3), 298-304. 

278. McConnell, K. J.; Beveridge, D., DNA structure: what's in charge? Journal of 

molecular biology 2000, 304 (5), 803-820. 

279. Hud, N. V.; Plavec, J., A unified model for the origin of DNA sequence‐directed 

curvature. Biopolymers 2003, 69 (1), 144-158. 

280. Stellwagen, N. C.; Gelfi, C.; Righetti, P. G., The free solution mobility of DNA. 

Biopolymers 1997, 42 (6), 687-703. 

 



www.manaraa.com

 

177 

 

281. Schiedt, B.; Healy, K.; Morrison, A. P.; Neumann, R.; Siwy, Z., Transport of ions 

and biomolecules through single asymmetric nanopores in polymer films. Nuclear 

Instruments and Methods in Physics Research Section B: Beam Interactions with Materials 

and Atoms 2005, 236 (1), 109-116. 

282. Stellwagen, E.; Dong, Q.; Stellwagen, N. C., Monovalent cations affect the free 

solution mobility of DNA by perturbing the hydrogen‐bonded structure of water. 

Biopolymers 2005, 78 (2), 62-68. 

283. Kawano, R.; Schibel, A. E.; Cauley, C.; White, H. S., Controlling the translocation 

of single-stranded DNA through α-hemolysin ion channels using viscosity. Langmuir 

2008, 25 (2), 1233-1237. 

284. Fologea, D.; Uplinger, J.; Thomas, B.; McNabb, D. S.; Li, J., Slowing DNA 

translocation in a solid-state nanopore. Nano letters 2005, 5 (9), 1734-1737. 

285. Ralph, H.; William, S.; Herring, F. G.; Madura Jeffrey, D., General chemistry: 

Principles and modern applications. Prentice Hall 2007, 606. 

286. Falkenhagen, H., The principal ideas in the interionic attraction theory of strong 

electrolytes. Reviews of Modern Physics 1931, 3 (3), 412. 

287. Wanunu, M.; Morrison, W.; Rabin, Y.; Grosberg, A. Y.; Meller, A., Electrostatic 

focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nature 

nanotechnology 2010, 5 (2), 160-165. 

288. Hatlo, M. M.; Panja, D.; van Roij, R., Translocation of DNA Molecules through 

Nanopores with Salt Gradients: The Role of Osmotic Flow. Physical Review Letters 2011, 

107 (6), 068101. 

289. Chou, T., Enhancement of charged macromolecule capture by nanopores in a salt 

gradient. The Journal of chemical physics 2009, 131 (3), 034703. 

290. Grosberg, A. Y.; Rabin, Y., DNA capture into a nanopore: Interplay of diffusion 

and electrohydrodynamics. J. Chem. Phys. 2010, 133 (16), 165102. 

291. Grosberg, A. Y.; Rabin, Y., DNA capture into a nanopore: interplay of diffusion 

and electrohydrodynamics. The Journal of chemical physics 2010, 133 (16), 10B617. 

292. Siwy, Z.; Kosińska, I.; Fuliński, A.; Martin, C., Asymmetric diffusion through 

synthetic nanopores. Physical review letters 2005, 94 (4), 048102. 

293. Wang, Y.; Zheng, D.; Tan, Q.; Wang, M. X.; Gu, L.-Q., Nanopore-based detection 

of circulating microRNAs in lung cancer patients. Nature nanotechnology 2011, 6 (10), 

668. 



www.manaraa.com

 

178 

 

294. Wen, S.; Zeng, T.; Liu, L.; Zhao, K.; Zhao, Y.; Liu, X.; Wu, H.-C., Highly sensitive 

and selective DNA-based detection of mercury (II) with α-hemolysin nanopore. Journal of 

the American Chemical Society 2011, 133 (45), 18312-18317. 

295. Simpson, J. T.; Workman, R. E.; Zuzarte, P.; David, M.; Dursi, L.; Timp, W., 

Detecting DNA cytosine methylation using nanopore sequencing. nature methods 2017, 

14 (4), 407-410. 

296. Rand, A. C.; Jain, M.; Eizenga, J. M.; Musselman-Brown, A.; Olsen, H. E.; Akeson, 

M.; Paten, B., Mapping DNA methylation with high-throughput nanopore sequencing. 

nature methods 2017, 14 (4), 411-413. 

297. Hodges-Garcia, Y.; Hagerman, P. J., Cytosine methylation can induce local 

distortions in the structure of duplex DNA. Biochemistry 1992, 31 (33), 7595-9. 

298. Hagerman, P. J., Pyrimidine 5-methyl groups influence the magnitude of DNA 

curvature. Biochemistry 1990, 29 (8), 1980-3. 

299. Norberg, J.; Vihinen, M., Molecular dynamics simulation of the effects of cytosine 

methylation on structure of oligonucleotides. Journal of Molecular Structure-Theochem 

2001, 546, 51-62. 

300. Dantas Machado, A. C.; Zhou, T.; Rao, S.; Goel, P.; Rastogi, C.; Lazarovici, A.; 

Bussemaker, H. J.; Rohs, R., Evolving insights on how cytosine methylation affects 

protein–DNA binding. Briefings in functional genomics 2014, 14 (1), 61-73. 

301. Rao, S.; Chiu, T.-P.; Kribelbauer, J. F.; Mann, R. S.; Bussemaker, H. J.; Rohs, R., 

Systematic prediction of DNA shape changes due to CpG methylation explains epigenetic 

effects on protein–DNA binding. Epigenetics & chromatin 2018, 11 (1), 6. 

302. Keyser, U. F.; Koeleman, B. N.; van Dorp, S.; Krapf, D.; Smeets, R. M. M.; Lemay, 

S. G.; Dekker, N. H.; Dekker, C., Direct force measurements on DNA in a solid-state 

nanopore. 2006, 2, 473. 

303. Klose, R. J.; Bird, A. P., Genomic DNA methylation: the mark and its mediators. 

Trends in biochemical sciences 2006, 31 (2), 89-97. 

304. Krishnakumar, R.; Sinha, A.; Bird, S. W.; Jayamohan, H.; Edwards, H. S.; 

Schoeniger, J. S.; Patel, K. D.; Branda, S. S.; Bartsch, M. S., Systematic and stochastic 

influences on the performance of the MinION nanopore sequencer across a range of 

nucleotide bias. Scientific reports 2018, 8 (1), 1-13. 

305. Wilson, B. D.; Eisenstein, M.; Soh, H. T., High-fidelity nanopore sequencing of 

ultra-short DNA targets. Analytical chemistry 2019, 91 (10), 6783-6789. 

306. Marcus, Y., Ion Properties, Marcus Dekker. Inc, New York 1997. 



www.manaraa.com

 

179 

 

307. Wang, Y.; Tian, K.; Hunter, L. L.; Ritzo, B.; Gu, L.-Q., Probing molecular 

pathways for DNA orientational trapping, unzipping and translocation in nanopores by 

using a tunable overhang sensor. Nanoscale 2014, 6 (19), 11372-11379. 

308. Jin, Q.; Fleming, A. M.; Burrows, C. J.; White, H. S., Unzipping kinetics of duplex 

DNA containing oxidized lesions in an α-hemolysin nanopore. Journal of the American 

Chemical Society 2012, 134 (26), 11006-11011. 

309. Sauer-Budge, A. F.; Nyamwanda, J. A.; Lubensky, D. K.; Branton, D., Unzipping 

Kinetics of Double-Stranded DNA in a Nanopore. Physical Review Letters 2003, 90 (23), 

238101. 

310. Mathé, J.; Visram, H.; Viasnoff, V.; Rabin, Y.; Meller, A., Nanopore unzipping of 

individual DNA hairpin molecules. Biophysical Journal 2004, 87 (5), 3205-3212. 

311. Dudko, O. K.; Mathé, J.; Szabo, A.; Meller, A.; Hummer, G., Extracting kinetics 

from single-molecule force spectroscopy: nanopore unzipping of DNA hairpins. 

Biophysical journal 2007, 92 (12), 4188-4195. 

312. Viasnoff, V.; Chiaruttini, N.; Muzard, J.; Bockelmann, U., Force fluctuations assist 

nanopore unzipping of DNA. Journal of Physics: Condensed Matter 2010, 22 (45), 

454122. 

313. Muzard, J.; Martinho, M.; Mathé, J.; Bockelmann, U.; Viasnoff, V., DNA 

Translocation and Unzipping through a Nanopore: Some Geometrical Effects. Biophysical 

Journal 2010, 98 (10), 2170-2178. 

314. Alishahi, M.; Kamali, R.; Abouali, O. J. T. E. P. J. E., Rigorous study of molecular 

dynamics of a single dsDNA confined in a nanochannel: Introduction of a critical mobility 

behaviour. 2015, 38 (8), 92. 

315. Strick, T. R.; Bensimon, D.; Croquette, V., Micro‐mechanical measurement of the 

torsional modulus of DNA. Genetica 1999, 106 (1), 57-62. 

316. Scarsdale, J. N.; Webb, H. D.; Ginder, G. D.; Williams Jr, D. C., Solution structure 

and dynamic analysis of chicken MBD2 methyl binding domain bound to a target-

methylated DNA sequence. Nucleic acids research 2011, 39 (15), 6741-6752. 

317. Torchy, M. P.; Hamiche, A.; Klaholz, B. P., Structure and function insights into the 

NuRD chromatin remodeling complex. Cellular and Molecular Life Sciences 2015, 72 

(13), 2491-2507. 

318. Liu, Y.; Zhang, X.; Blumenthal, R. M.; Cheng, X., A common mode of recognition 

for methylated CpG. Trends in biochemical sciences 2013, 38 (4), 177-183. 

319. Wan, J. C.; Massie, C.; Garcia-Corbacho, J.; Mouliere, F.; Brenton, J. D.; Caldas, 

C.; Pacey, S.; Baird, R.; Rosenfeld, N., Liquid biopsies come of age: towards 

implementation of circulating tumour DNA. Nature Reviews Cancer 2017, 17 (4), 223. 



www.manaraa.com

 

180 

 

320. Leon, S.; Shapiro, B.; Sklaroff, D.; Yaros, M., Free DNA in the serum of cancer 

patients and the effect of therapy. Cancer research 1977, 37 (3), 646-650. 

321. Thierry, A.; El Messaoudi, S.; Gahan, P.; Anker, P.; Stroun, M., Origins, structures, 

and functions of circulating DNA in oncology. Cancer and metastasis reviews 2016, 35 

(3), 347-376. 

322. Stroun, M.; Anker, P.; Maurice, P.; Lyautey, J.; Lederrey, C.; Beljanski, M., 

Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 

1989, 46 (5), 318-322. 

323. Bardelli, A.; Pantel, K., Liquid biopsies, what we do not know (yet). Cancer cell 

2017, 31 (2), 172-179. 

324. Diaz Jr, L. A.; Bardelli, A., Liquid biopsies: genotyping circulating tumor DNA. 

Journal of clinical oncology 2014, 32 (6), 579. 

325. Perakis, S.; Speicher, M. R., Emerging concepts in liquid biopsies. BMC medicine 

2017, 15 (1), 75. 

326. Van Der Pol, Y.; Mouliere, F., Toward the early detection of cancer by decoding 

the epigenetic and environmental fingerprints of cell-free DNA. Cancer cell 2019, 36 (4), 

350-368. 

327. Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A., Integrating liquid biopsies into 

the management of cancer. Nature reviews Clinical oncology 2017, 14 (9), 531. 

328. Stewart, C. M.; Kothari, P. D.; Mouliere, F.; Mair, R.; Somnay, S.; Benayed, R.; 

Zehir, A.; Weigelt, B.; Dawson, S. J.; Arcila, M. E., The value of cell‐free DNA for 

molecular pathology. The Journal of pathology 2018, 244 (5), 616-627. 

329. Cheng, F.; Su, L.; Qian, C., Circulating tumor DNA: a promising biomarker in the 

liquid biopsy of cancer. Oncotarget 2016, 7 (30), 48832. 

330. Botezatu, I.; Serdyuk, O. g.; Potapova, G.; Shelepov, V.; Alechina, R.; Molyaka, 

Y.; Anan’ev, V.; Bazin, I.; Garin, A.; Narimanov, M., Genetic analysis of DNA excreted 

in urine: a new approach for detecting specific genomic DNA sequences from cells dying 

in an organism. Clinical chemistry 2000, 46 (8), 1078-1084. 

331. Chan, K. A.; Leung, S. F.; Yeung, S. W.; Chan, A. T.; Lo, Y. D., Quantitative 

analysis of the transrenal excretion of circulating EBV DNA in nasopharyngeal carcinoma 

patients. Clinical Cancer Research 2008, 14 (15), 4809-4813. 

332. Birkenkamp-Demtröder, K.; Nordentoft, I.; Christensen, E.; Høyer, S.; Reinert, T.; 

Vang, S.; Borre, M.; Agerbæk, M.; Jensen, J. B.; Ørntoft, T. F., Genomic alterations in 

liquid biopsies from patients with bladder cancer. European urology 2016, 70 (1), 75-82. 



www.manaraa.com

 

181 

 

333. Reckamp, K. L.; Melnikova, V. O.; Karlovich, C.; Sequist, L. V.; Camidge, D. R.; 

Wakelee, H.; Perol, M.; Oxnard, G. R.; Kosco, K.; Croucher, P., A highly sensitive and 

quantitative test platform for detection of NSCLC EGFR mutations in urine and plasma. 

Journal of Thoracic Oncology 2016, 11 (10), 1690-1700. 

334. Su, Y.-H.; Wang, M.; Brenner, D. E.; Ng, A.; Melkonyan, H.; Umansky, S.; Syngal, 

S.; Block, T. M., Human urine contains small, 150 to 250 nucleotide-sized, soluble DNA 

derived from the circulation and may be useful in the detection of colorectal cancer. The 

journal of molecular diagnostics 2004, 6 (2), 101-107. 

335. Mithani, S. K.; Smith, I. M.; Zhou, S.; Gray, A.; Koch, W. M.; Maitra, A.; Califano, 

J. A., Mitochondrial resequencing arrays detect tumor-specific mutations in salivary rinses 

of patients with head and neck cancer. Clinical Cancer Research 2007, 13 (24), 7335-7340. 

336. Wang, Y.; Springer, S.; Zhang, M.; McMahon, K. W.; Kinde, I.; Dobbyn, L.; Ptak, 

J.; Brem, H.; Chaichana, K.; Gallia, G. L., Detection of tumor-derived DNA in 

cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. 

Proceedings of the National Academy of Sciences 2015, 112 (31), 9704-9709. 

337. Pan, W.; Gu, W.; Nagpal, S.; Gephart, M. H.; Quake, S. R., Brain tumor mutations 

detected in cerebral spinal fluid. Clinical chemistry 2015, 61 (3), 514-522. 

338. De Mattos-Arruda, L.; Mayor, R.; Ng, C. K.; Weigelt, B.; Martínez-Ricarte, F.; 

Torrejon, D.; Oliveira, M.; Arias, A.; Raventos, C.; Tang, J., Cerebrospinal fluid-derived 

circulating tumour DNA better represents the genomic alterations of brain tumours than 

plasma. Nature communications 2015, 6, 8839. 

339. Lehmann-Werman, R.; Zick, A.; Paweletz, C.; Welch, M.; Hubert, A.; Maoz, M.; 

Davidy, T.; Magenheim, J.; Piyanzin, S.; Neiman, D., Specific detection of cell-free DNA 

derived from intestinal epithelial cells using methylation patterns. bioRxiv 2018, 409219. 

340. Sun, K.; Jiang, P.; Chan, K. A.; Wong, J.; Cheng, Y. K.; Liang, R. H.; Chan, W.-

k.; Ma, E. S.; Chan, S. L.; Cheng, S. H., Plasma DNA tissue mapping by genome-wide 

methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. 

Proceedings of the National Academy of Sciences 2015, 112 (40), E5503-E5512. 

341. Underhill, H. R.; Kitzman, J. O.; Hellwig, S.; Welker, N. C.; Daza, R.; Baker, D. 

N.; Gligorich, K. M.; Rostomily, R. C.; Bronner, M. P.; Shendure, J., Fragment length of 

circulating tumor DNA. PLoS genetics 2016, 12 (7). 

342. Lehmann-Werman, R.; Magenheim, J.; Moss, J.; Neiman, D.; Abraham, O.; 

Piyanzin, S.; Zemmour, H.; Fox, I.; Dor, T.; Grompe, M., Monitoring liver damage using 

hepatocyte-specific methylation markers in cell-free circulating DNA. JCI insight 2018, 3 

(12). 

 



www.manaraa.com

 

182 

 

343. Ju, Y. S.; Alexandrov, L. B.; Gerstung, M.; Martincorena, I.; Nik-Zainal, S.; 

Ramakrishna, M.; Davies, H. R.; Papaemmanuil, E.; Gundem, G.; Shlien, A., Origins and 

functional consequences of somatic mitochondrial DNA mutations in human cancer. Elife 

2014, 3, e02935. 

344. Corcoran, R. B.; Chabner, B. A., Application of cell-free DNA analysis to cancer 

treatment. New England Journal of Medicine 2018, 379 (18), 1754-1765. 

345. Chen, X. Q.; Stroun, M.; Magnenat, J.-L.; Nicod, L. P.; Kurt, A.-M.; Lyautey, J.; 

Lederrey, C.; Anker, P., Microsatellite alterations in plasma DNA of small cell lung cancer 

patients. Nature medicine 1996, 2 (9), 1033-1035. 

346. Gormally, E.; Caboux, E.; Vineis, P.; Hainaut, P., Circulating free DNA in plasma 

or serum as biomarker of carcinogenesis: practical aspects and biological significance. 

Mutation Research/Reviews in Mutation Research 2007, 635 (2-3), 105-117. 

347. Mouliere, F.; El Messaoudi, S.; Pang, D.; Dritschilo, A.; Thierry, A. R., Multi-

marker analysis of circulating cell-free DNA toward personalized medicine for colorectal 

cancer. Molecular oncology 2014, 8 (5), 927-941. 

348. Mouliere, F.; Robert, B.; Peyrotte, E. A.; Del Rio, M.; Ychou, M.; Molina, F.; 

Gongora, C.; Thierry, A. R., High fragmentation characterizes tumour-derived circulating 

DNA. PloS one 2011, 6 (9). 

349. Shapiro, B.; Chakrabarty, M.; Cohn, E. M.; Leon, S. A., Determination of 

circulating DNA levels in patients with benign or malignant gastrointestinal disease. 

Cancer 1983, 51 (11), 2116-2120. 

350. Bettegowda, C.; Sausen, M.; Leary, R. J.; Kinde, I.; Wang, Y.; Agrawal, N.; 

Bartlett, B. R.; Wang, H.; Luber, B.; Alani, R. M., Detection of circulating tumor DNA in 

early-and late-stage human malignancies. Science translational medicine 2014, 6 (224), 

224ra24-224ra24. 

351. Zill, O. A.; Banks, K. C.; Fairclough, S. R.; Mortimer, S. A.; Vowles, J. V.; 

Mokhtari, R.; Gandara, D. R.; Mack, P. C.; Odegaard, J. I.; Nagy, R. J., The landscape of 

actionable genomic alterations in cell-free circulating tumor DNA from 21,807 advanced 

cancer patients. Clinical Cancer Research 2018, 24 (15), 3528-3538. 

352. Diehl, F.; Li, M.; Dressman, D.; He, Y.; Shen, D.; Szabo, S.; Diaz, L. A.; Goodman, 

S. N.; David, K. A.; Juhl, H., Detection and quantification of mutations in the plasma of 

patients with colorectal tumors. Proceedings of the National Academy of Sciences 2005, 

102 (45), 16368-16373. 

353. Dawson, S.-J.; Tsui, D. W.; Murtaza, M.; Biggs, H.; Rueda, O. M.; Chin, S.-F.; 

Dunning, M. J.; Gale, D.; Forshew, T.; Mahler-Araujo, B., Analysis of circulating tumor 

DNA to monitor metastatic breast cancer. New England Journal of Medicine 2013, 368 

(13), 1199-1209. 



www.manaraa.com

 

183 

 

354. Tie, J.; Wang, Y.; Tomasetti, C.; Li, L.; Springer, S.; Kinde, I.; Silliman, N.; Tacey, 

M.; Wong, H.-L.; Christie, M., Circulating tumor DNA analysis detects minimal residual 

disease and predicts recurrence in patients with stage II colon cancer. Science translational 

medicine 2016, 8 (346), 346ra92-346ra92. 

355. Chaudhuri, A. A.; Chabon, J. J.; Lovejoy, A. F.; Newman, A. M.; Stehr, H.; Azad, 

T. D.; Khodadoust, M. S.; Esfahani, M. S.; Liu, C. L.; Zhou, L., Early detection of 

molecular residual disease in localized lung cancer by circulating tumor DNA profiling. 

Cancer discovery 2017, 7 (12), 1394-1403. 

356. Cohen, J. D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; 

Javed, A. A.; Wong, F.; Mattox, A., Detection and localization of surgically resectable 

cancers with a multi-analyte blood test. Science 2018, 359 (6378), 926-930. 

357. Fazel, R.; Krumholz, H. M.; Wang, Y.; Ross, J. S.; Chen, J.; Ting, H. H.; Shah, N. 

D.; Nasir, K.; Einstein, A. J.; Nallamothu, B. K., Exposure to low-dose ionizing radiation 

from medical imaging procedures. New England Journal of Medicine 2009, 361 (9), 849-

857. 

358. Overman, M. J.; Modak, J.; Kopetz, S.; Murthy, R.; Yao, J. C.; Hicks, M. E.; 

Abbruzzese, J. L.; Tam, A. L., Use of research biopsies in clinical trials: are risks and 

benefits adequately discussed? Journal of clinical oncology 2013, 31 (1), 17. 

359. Popper, H. H., Commentary on tumor heterogeneity. Translational lung cancer 

research 2016, 5 (4), 433. 

360. De Mattos-Arruda, L.; Weigelt, B.; Cortes, J.; Won, H.; Ng, C.; Nuciforo, P.; 

Bidard, F.-C.; Aura, C.; Saura, C.; Peg, V., Capturing intra-tumor genetic heterogeneity by 

de novo mutation profiling of circulating cell-free tumor DNA: a proof-of-principle. 

Annals of oncology 2014, 25 (9), 1729-1735. 

361. Jamal-Hanjani, M.; Wilson, G.; Horswell, S.; Mitter, R.; Sakarya, O.; Constantin, 

T.; Salari, R.; Kirkizlar, E.; Sigurjonsson, S.; Pelham, R., Detection of ubiquitous and 

heterogeneous mutations in cell-free DNA from patients with early-stage non-small-cell 

lung cancer. Annals of Oncology 2016, 27 (5), 862-867. 

362. To, E. W.; Chan, K. A.; Leung, S.-F.; Chan, L. Y.; To, K.-F.; Chan, A. T.; Johnson, 

P. J.; Lo, Y. D., Rapid clearance of plasma Epstein-Barr virus DNA after surgical treatment 

of nasopharyngeal carcinoma. Clinical Cancer Research 2003, 9 (9), 3254-3259. 

363. Lo, Y. D.; Zhang, J.; Leung, T. N.; Lau, T. K.; Chang, A. M.; Hjelm, N. M., Rapid 

clearance of fetal DNA from maternal plasma. The American Journal of Human Genetics 

1999, 64 (1), 218-224. 

364. Yao, W.; Mei, C.; Nan, X.; Hui, L., Evaluation and comparison of in vitro 

degradation kinetics of DNA in serum, urine and saliva: a qualitative study. Gene 2016, 

590 (1), 142-148. 



www.manaraa.com

 

184 

 

365. Bronner, I. F.; Quail, M. A.; Turner, D. J.; Swerdlow, H., Improved protocols for 

illumina sequencing. Current protocols in human genetics 2013, 79 (1), 18.2. 1-18.2. 42. 

366. Stroun, M.; Anker, P.; Lyautey, J.; Lederrey, C.; Maurice, P. A., Isolation and 

characterization of DNA from the plasma of cancer patients. European Journal of Cancer 

and Clinical Oncology 1987, 23 (6), 707-712. 

367. Cheng, S. H.; Jiang, P.; Sun, K.; Cheng, Y. K.; Chan, K. A.; Leung, T. Y.; Chiu, R. 

W.; Lo, Y. D., Noninvasive prenatal testing by nanopore sequencing of maternal plasma 

DNA: feasibility assessment. Clinical chemistry 2015, 61 (10), 1305-1306. 

368. Thakur, B. K.; Zhang, H.; Becker, A.; Matei, I.; Huang, Y.; Costa-Silva, B.; Zheng, 

Y.; Hoshino, A.; Brazier, H.; Xiang, J., Double-stranded DNA in exosomes: a novel 

biomarker in cancer detection. Cell research 2014, 24 (6), 766-769. 

369. Kahlert, C.; Melo, S. A.; Protopopov, A.; Tang, J.; Seth, S.; Koch, M.; Zhang, J.; 

Weitz, J.; Chin, L.; Futreal, A., Identification of double-stranded genomic DNA spanning 

all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients 

with pancreatic cancer. Journal of Biological Chemistry 2014, 289 (7), 3869-3875. 

370. Jahr, S.; Hentze, H.; Englisch, S.; Hardt, D.; Fackelmayer, F. O.; Hesch, R.-D.; 

Knippers, R., DNA fragments in the blood plasma of cancer patients: quantitations and 

evidence for their origin from apoptotic and necrotic cells. Cancer research 2001, 61 (4), 

1659-1665. 

371. Khatami, F.; Larijani, B.; Tavangar, S. M., The presence of tumor 

extrachomosomal circular DNA (ecDNA) as a component of liquid biopsy in blood. 

Medical hypotheses 2018, 114, 5-7. 

372. Verhaak, R. G.; Bafna, V.; Mischel, P. S., Extrachromosomal oncogene 

amplification in tumour pathogenesis and evolution. Nature Reviews Cancer 2019, 19 (5), 

283-288. 

373. Breitbach, S.; Tug, S.; Helmig, S.; Zahn, D.; Kubiak, T.; Michal, M.; Gori, T.; 

Ehlert, T.; Beiter, T.; Simon, P., Direct quantification of cell-free, circulating DNA from 

unpurified plasma. PloS one 2014, 9 (3). 

374. Beránek, M.; Sirák, I.; Vosmik, M.; Petera, J.; Drastíková, M.; Palicka, V., Carrier 

molecules and extraction of circulating tumor DNA for next generation sequencing in 

colorectal cancer. Acta Medica (Hradec Kralove) 2016, 59 (2), 54-8. 

375. Gansauge, M.-T.; Meyer, M., Single-stranded DNA library preparation for the 

sequencing of ancient or damaged DNA. Nature protocols 2013, 8 (4), 737. 

376. Morozkin, E.; Sil’nikov, V.; Rykova, E. Y.; Vlassov, V.; Laktionov, P., 

Extracellular DNA in culture of primary and transformed cells, infected and not infected 

with mycoplasma. Bulletin of experimental biology and medicine 2009, 147 (1), 63-65. 



www.manaraa.com

 

185 

 

377. Morozkin, E. S.; Laktionov, P. P.; Rykova, E. Y.; Bryzgunova, O. E.; Vlassov, V. 

V., Release of nucleic acids by eukaryotic cells in tissue culture. Nucleosides, Nucleotides 

and Nucleic Acids 2004, 23 (6-7), 927-930. 

378. Choi, J. J.; Reich Iii, C.; Pisetsky, D., Release of DNA from dead and dying 

lymphocyte and monocyte cell lines in vitro. Scandinavian journal of immunology 2004, 

60 (1‐2), 159-166. 

379. Jiang, P.; Chan, C. W.; Chan, K. A.; Cheng, S. H.; Wong, J.; Wong, V. W.-S.; 

Wong, G. L.; Chan, S. L.; Mok, T. S.; Chan, H. L., Lengthening and shortening of plasma 

DNA in hepatocellular carcinoma patients. Proceedings of the National Academy of 

Sciences 2015, 112 (11), E1317-E1325. 

380. Bronkhorst, A. J.; Wentzel, J. F.; Aucamp, J.; Van Dyk, E.; Du Plessis, L.; 

Pretorius, P. J., Characterization of the cell-free DNA released by cultured cancer cells. 

Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 2016, 1863 (1), 157-165. 

381. Bitto, N. J.; Chapman, R.; Pidot, S.; Costin, A.; Lo, C.; Choi, J.; D’cruze, T.; 

Reynolds, E. C.; Dashper, S. G.; Turnbull, L., Bacterial membrane vesicles transport their 

DNA cargo into host cells. Scientific reports 2017, 7 (1), 1-11. 

382. Ali, M. M.; Li, F.; Zhang, Z.; Zhang, K.; Kang, D.-K.; Ankrum, J. A.; Le, X. C.; 

Zhao, W., Rolling circle amplification: a versatile tool for chemical biology, materials 

science and medicine. Chemical Society Reviews 2014, 43 (10), 3324-3341. 

383. Lin, C.; Xie, M.; Chen, J. J.; Liu, Y.; Yan, H., Rolling‐Circle Amplification of a 

DNA Nanojunction. Angewandte Chemie International Edition 2006, 45 (45), 7537-7539. 

 

  



www.manaraa.com

 

186 

 

Appendix A 

 

Example of R Code for Dwell Time Boxplots 

 
################ Dwell time distribution - Grouped Boxplot ################## 

dwelltime <-read.csv("Amplitude_Dwelltime_allconditions_mut_4columns_new.csv", sep = ",", 

header = TRUE) 

dwelltime.f <- dwelltime %>%filter(dwelltime$Amplitude > 60 & dwelltime$Dwell.Time > 1) 

head(dwelltime.f) 

##   Amplitude Dwell.Time Condition Treatment 

## 1    86.263       1.80      L1M1     No CX 

## 2    86.226       7.92      L1M1     No CX 

## 3    85.990       1.84      L1M1     No CX 

## 4    85.956     818.26      L1M1     No CX 

## 5    85.549   27910.62      L1M1     No CX 

## 6    85.416       2.54      L1M1     No CX 

# annotation table with adjusted pvals and y-position of the labels 

anno_df = compare_means(Dwell.Time ~ Treatment, group.by = "Condition", data = dwelltime.

f) %>% 

  mutate(y_pos = 40) 

## Warning: `cols` is now required. 

## Please use `cols = c(p)` 

p <- ggplot(dwelltime.f, aes(x=Condition, y=Dwell.Time)) +  

  geom_boxplot(aes(fill = Treatment)) +  

  scale_fill_brewer(palette = "Dark2")+ 

  scale_y_continuous(trans = 'log10') 

 

p <- p + stat_compare_means(comparisons = list(c("No CX", "With CX")), size = 4)+  

  theme(legend.position="none")+ # Remove legend 

  # set transparency 

  theme( 

    panel.grid.major = element_blank(),  

    panel.grid.minor = element_blank(), 

    panel.background = element_rect(fill = "transparent",colour = NA), 

    plot.background = element_rect(fill = "transparent",colour = NA) 

  ) 

p 
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ggsave(p, filename = "Ckit_Mut_Dwelltime_GroupedBoxplot.png",  bg = "transparent") 

## Saving 5 x 4 in image 
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Appendix B 

 

Example of R Code for Summary Statistic and Pairwise Comparison  

 
##########Summary of the dwell time table: mean, max, min, median## ######### 

dwelltime <-read.csv("Amplitude_Dwelltime_allconditions_mut_new.csv", sep = ",", header = T

RUE) 

dwelltime.f <- dwelltime %>%filter(dwelltime$Amplitude > 50 & dwelltime$Dwell.Time > 1) 

stat.sum <- as.data.frame(dwelltime.f %>%  

                            group_by(Condition)%>% 

                            summarise(Mean = mean(Dwell.Time), Max = max(Dwell.Time), Min =min(

Dwell.Time), Median = median(Dwell.Time), Std = sd(Dwell.Time) )) 

 

stat.sum 

##    Condition         Mean        Max    Min  Median        Std 

## 1      Ckit1  3677.865950 114411.352 1.0500  5.5500 12755.3138 

## 2   Ckit1_CX 10245.271661 152850.000 1.0200 31.1900 25301.9010 

## 3       L1M1  3455.983506  51802.340 1.0200  3.5500  9639.9690 

## 4    L1M1_CX  1664.956641  39545.141 1.0230  8.8000  5819.8137 

## 5       L1M2     8.650711    296.945 1.0160  2.7190    22.9824 

## 6    L1M2_CX   563.404257  39771.090 1.0200  4.4885  3364.7391 

## 7       L2M1  2055.286784  65396.621 1.0200  5.2800  7247.3926 

## 8    L2M1_CX    30.167402   1447.891 1.0310  3.2660   132.3704 

## 9       L2M2    30.100872   1447.891 1.0310  3.2830   132.2039 

## 10   L2M2_CX  6388.554461 119939.500 1.0200  8.9800 16950.6187 

## 11       M2C    14.967050   3449.960 1.0200  4.0800   121.7973 

## 12    M2C_CX   312.115897  29303.414 1.0155  4.8599  1863.5142 

# Compute the analysis of variance 

res.aov <- aov(Dwell.Time ~ Condition, data = dwelltime.f) 

# Summary of the analysis 

summary(res.aov) 

##               Df    Sum Sq   Mean Sq F value Pr(>F)     

## Condition     11 4.461e+10 4.056e+09   78.04 <2e-16 *** 

## Residuals   9294 4.830e+11 5.197e+07                    

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#Multiple pairwise comparison 

TukeyHSD(res.aov) 

##   Tukey multiple comparisons of means 

##     95% family-wise confidence level 

##  

## Fit: aov(formula = Dwell.Time ~ Condition, data = dwelltime.f) 

##  

## $Condition 

##                           diff         lwr          upr     p adj 
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## Ckit1_CX-Ckit1    6.567406e+03   4934.7940  8200.017464 0.0000000 

## L1M1-Ckit1       -2.218824e+02  -2252.6909  1808.925998 0.9999999 

## L1M1_CX-Ckit1    -2.012909e+03  -3553.2472  -472.571381 0.0011828 

## L1M2-Ckit1       -3.669215e+03  -4968.2458 -2370.184726 0.0000000 

## L1M2_CX-Ckit1    -3.114462e+03  -4391.5832 -1837.340205 0.0000000 

## L2M1-Ckit1       -1.622579e+03  -2778.6092  -466.549135 0.0002834 

## L2M1_CX-Ckit1    -3.647699e+03  -5097.9737 -2197.423364 0.0000000 

## L2M2-Ckit1       -3.647765e+03  -5096.7379 -2198.792281 0.0000000 

## L2M2_CX-Ckit1     2.710689e+03   1130.0860  4291.291062 0.0000014 

## M2C-Ckit1        -3.662899e+03  -4600.9346 -2724.863192 0.0000000 

## M2C_CX-Ckit1     -3.365750e+03  -4313.9376 -2417.562523 0.0000000 

## L1M1-Ckit1_CX    -6.789288e+03  -9130.8543 -4447.721959 0.0000000 

## L1M1_CX-Ckit1_CX -8.580315e+03 -10511.9957 -6648.634339 0.0000000 

## L1M2-Ckit1_CX    -1.023662e+04 -11981.9661 -8491.275828 0.0000000 

## L1M2_CX-Ckit1_CX -9.681867e+03 -11410.9679 -7952.766882 0.0000000 

## L2M1-Ckit1_CX    -8.189985e+03  -9831.6775 -6548.292229 0.0000000 

## L2M1_CX-Ckit1_CX -1.021510e+04 -12075.7621 -8354.446464 0.0000000 

## L2M2-Ckit1_CX    -1.021517e+04 -12074.8136 -8355.527950 0.0000000 

## L2M2_CX-Ckit1_CX -3.856717e+03  -5820.6555 -1892.778875 0.0000000 

## M2C-Ckit1_CX     -1.023030e+04 -11726.5199 -8734.089282 0.0000000 

## M2C_CX-Ckit1_CX  -9.933156e+03 -11435.7565 -8430.555048 0.0000000 

## L1M1_CX-L1M1     -1.791027e+03  -4069.2174   487.163654 0.2970685 

## L1M2-L1M1        -3.447333e+03  -5569.8293 -1324.836297 0.0000073 

## L1M2_CX-L1M1     -2.892579e+03  -5001.7379  -783.420553 0.0004611 

## L2M1-L1M1        -1.400697e+03  -3438.8127   637.419207 0.5154649 

## L2M1_CX-L1M1     -3.425816e+03  -5644.1058 -1207.526398 0.0000293 

## L2M2-L1M1        -3.425883e+03  -5643.3211 -1208.444185 0.0000289 

## L2M2_CX-L1M1      2.932571e+03    626.9657  5238.176197 0.0019255 

## M2C-L1M1         -3.441016e+03  -5363.8847 -1518.148260 0.0000003 

## M2C_CX-L1M1      -3.143868e+03  -5071.7086 -1216.026666 0.0000065 

## L1M2-L1M1_CX     -1.656306e+03  -3315.6580     3.046169 0.0509311 

## L1M2_CX-L1M1_CX  -1.101552e+03  -2743.8095   540.704725 0.5550697 

## L2M1-L1M1_CX      3.903301e+02  -1159.6294  1940.289674 0.9996296 

## L2M1_CX-L1M1_CX  -1.634789e+03  -3415.0328   145.454347 0.1080353 

## L2M2-L1M1_CX     -1.634856e+03  -3414.0385   144.326988 0.1074817 

## L2M2_CX-L1M1_CX   4.723598e+03   2835.6694  6611.526193 0.0000000 

## M2C-L1M1_CX      -1.649990e+03  -3044.9377  -255.041525 0.0062430 

## M2C_CX-L1M1_CX   -1.352841e+03  -2754.6356    48.954072 0.0703972 

## L1M2_CX-L1M2      5.547535e+02   -863.6426  1973.149735 0.9818354 

## L2M1-L1M2         2.046636e+03    736.2110  3357.061151 0.0000217 

## L2M1_CX-L1M2      2.151669e+01  -1554.5882  1597.621562 1.0000000 

## L2M2-L1M2         2.145016e+01  -1553.4564  1596.356705 1.0000000 

## L2M2_CX-L1M2      6.379904e+03   4683.1089  8076.698634 0.0000000 

## M2C-L1M2          6.316339e+00  -1116.5013  1129.133975 1.0000000 

## M2C_CX-L1M2       3.034652e+02   -827.8473  1434.777718 0.9993243 

## L2M1-L1M2_CX      1.491883e+03    203.1727  2780.592311 0.0085447 

## L2M1_CX-L1M2_CX  -5.332369e+02  -2091.3336  1024.859929 0.9939262 

## L2M2-L1M2_CX     -5.333034e+02  -2090.1880  1023.581211 0.9938793 

## L2M2_CX-L1M2_CX   5.825150e+03   4145.0693  7505.231125 0.0000000 

## M2C-L1M2_CX      -5.484372e+02  -1645.8334   548.959014 0.8968496 

## M2C_CX-L1M2_CX   -2.512884e+02  -1357.3747   854.798014 0.9998642 
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## L2M1_CX-L2M1     -2.025119e+03  -3485.6096  -564.629147 0.0003670 

## L2M2-L2M1        -2.025186e+03  -3484.3829  -565.988946 0.0003600 

## L2M2_CX-L2M1      4.333268e+03   2743.2872  5923.248193 0.0000000 

## M2C-L2M1         -2.040320e+03  -2994.0726 -1086.566828 0.0000000 

## M2C_CX-L2M1      -1.743171e+03  -2706.9101  -779.431707 0.0000002 

## L2M2-L2M1_CX     -6.652969e-02  -1701.8739  1701.740880 1.0000000 

## L2M2_CX-L2M1_CX   6.358387e+03   4543.1927  8173.581461 0.0000000 

## M2C-L2M1_CX      -1.520035e+01  -1310.0120  1279.611326 1.0000000 

## M2C_CX-L2M1_CX    2.819485e+02  -1020.2365  1584.133537 0.9999157 

## L2M2_CX-L2M2      6.358454e+03   4544.2996  8172.607599 0.0000000 

## M2C-L2M2         -1.513382e+01  -1308.4866  1278.218929 1.0000000 

## M2C_CX-L2M2       2.820150e+02  -1018.7194  1582.749409 0.9999145 

## M2C-L2M2_CX      -6.373587e+03  -7812.8732 -4934.301617 0.0000000 

## M2C_CX-L2M2_CX   -6.076439e+03  -7522.3612 -4630.515953 0.0000000 

## M2C_CX-M2C        2.971488e+02   -390.0911   984.388807 0.9612128 
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Appendix C 

 

Example of R Code for Machine Learning Classification Models  

 
####Machine learning: predicting methylated from unmethylated DNA ##### 

## With MBD2  

bothend.ml <-read.csv("bothend_nome_MBD2_ml.csv", sep = ",", header = TRUE) 

head(bothend.ml) 

##   Amplitude Dwell.Time Condition 

## 1  82.35037   20704.35      nome 

## 2  86.29356     802.45      nome 

## 3  89.52220     206.75      nome 

## 4  55.81189      14.75      nome 

## 5  79.11031       6.35      nome 

## 6  60.56889       3.95      nome 

dim(bothend.ml) 

## [1] 1151    3 

dwelltime$Condition <- as.factor(dwelltime$Condition) 

 

df_ML <- bothend.ml 

df_ML <- na.omit(df_ML) 

 

 

df_ML.f <- df_ML%>%filter( df_ML$Amplitude > 75 & df_ML$Dwell.Time > 100 & df_ML

$Dwell.Time <10000) #Filtering data: only choose data with dwell time > 50ms.  

dim(df_ML.f) 

## [1] 360   3 

df_ML.f$Amplitude_scaled <-scale(df_ML.f$Amplitude) 

df_ML.f$Dwell.Time_scaled <-scale(df_ML.f$Dwell.Time) 

 

set.seed(35) 

train_indx <- createDataPartition(df_ML.f$Condition, p = 0.80, list = FALSE) 

 

train_set <- df_ML.f[train_indx,] 

test_set <- df_ML.f[-train_indx,] 

 

nrow(train_set) 

## [1] 289 

dim(train_set) 

## [1] 289   5 

nrow(test_set) 
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## [1] 71 

##################### Train the algorithm ############################ 

fitControl <- trainControl(method="boot", 

                           number = 10, 

                           preProcOptions = list(thresh = 0.99), # threshold for pca preprocess 

                           classProbs = TRUE, 

                           savePredictions = TRUE, 

                           summaryFunction = twoClassSummary) 

 

#################### Random Forest ################################# 

 

model_rf <- train(Condition~ Amplitude_scaled+Dwell.Time_scaled,data = train_set, method="r

f", metric="ROC", 

                  preProcess = c('center', 'scale'), trControl=fitControl) 

## note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 . 

pred_rf <- predict(model_rf, test_set) 

cm_rf <- confusionMatrix(pred_rf, test_set$Condition, positive = "nome") 

cm_rf 

## Confusion Matrix and Statistics 

##  

##           Reference 

## Prediction me_MBD2 nome 

##    me_MBD2      28    7 

##    nome          7   29 

##                                            

##                Accuracy : 0.8028           

##                  95% CI : (0.6914, 0.8878) 

##     No Information Rate : 0.507            

##     P-Value [Acc > NIR] : 2.446e-07        

##                                            

##                   Kappa : 0.6056           

##                                            

##  Mcnemar's Test P-Value : 1                

##                                            

##             Sensitivity : 0.8056           

##             Specificity : 0.8000           

##          Pos Pred Value : 0.8056           

##          Neg Pred Value : 0.8000           

##              Prevalence : 0.5070           

##          Detection Rate : 0.4085           

##    Detection Prevalence : 0.5070           

##       Balanced Accuracy : 0.8028           

##                                            

##        'Positive' Class : nome             

##  

############################### Using LDA ##################################### 

 



www.manaraa.com

 

193 

 

model_lda_df <- train(Condition ~., data = train_set, method = "lda", metric = "ROC", preProces

s = c("scale", "center"),  

                      trControl = fitControl) 

prediction_lda_df <- predict(model_lda_df, test_set) 

cm_lda_df <- confusionMatrix(prediction_lda_df, test_set$Condition, positive = "nome") 

cm_lda_df 

## Confusion Matrix and Statistics 

##  

##           Reference 

## Prediction me_MBD2 nome 

##    me_MBD2      26   16 

##    nome          9   20 

##                                            
##                Accuracy : 0.6479           

##                  95% CI : (0.5254, 0.7576) 

##     No Information Rate : 0.507            

##     P-Value [Acc > NIR] : 0.01165          

##                                            

##                   Kappa : 0.2976           

##                                            

##  Mcnemar's Test P-Value : 0.23014          

##                                            

##             Sensitivity : 0.5556           

##             Specificity : 0.7429           

##          Pos Pred Value : 0.6897           

##          Neg Pred Value : 0.6190           

##              Prevalence : 0.5070           

##          Detection Rate : 0.2817           

##    Detection Prevalence : 0.4085           

##       Balanced Accuracy : 0.6492           

##                                            

##        'Positive' Class : nome             

## 

################## Logistic regression #################### 

model_logreg_df <- train(Condition ~., data = train_set, method = "glm",  

                         metric = "ROC", preProcess = c("scale", "center"),  

                         trControl = fitControl) 

cm_logreg_df <- confusionMatrix(prediction_logreg_df, test_set$Condition, positive = "nome") 

cm_logreg_df 

## Confusion Matrix and Statistics 

##  

##           Reference 

## Prediction me_MBD2 nome 

##    me_MBD2      26   16 

##    nome          9   20 

##                                            

##                Accuracy : 0.6479           
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##                  95% CI : (0.5254, 0.7576) 

##     No Information Rate : 0.507            

##     P-Value [Acc > NIR] : 0.01165          

##                                            

##                   Kappa : 0.2976           

##                                            

##  Mcnemar's Test P-Value : 0.23014          

##                                            

##             Sensitivity : 0.5556           

##             Specificity : 0.7429           

##          Pos Pred Value : 0.6897           

##          Neg Pred Value : 0.6190           

##              Prevalence : 0.5070           

##          Detection Rate : 0.2817           

##    Detection Prevalence : 0.4085           

##       Balanced Accuracy : 0.6492           

##                                            

##        'Positive' Class : nome             

##  

################## K-nearest neighbor ############################# 

model_knn <- train(Condition~., 

                   data = train_set, 

                   method="knn", 

                   metric="ROC", 

                   preProcess = c('center', 'scale'), 

                   tuneLength=10, 

                   trControl=fitControl) 

pred_knn <- predict(model_knn, test_set) 

cm_knn <- confusionMatrix(pred_knn, test_set$Condition, positive = "nome") 

cm_knn 

## Confusion Matrix and Statistics 

##  

##           Reference 

## Prediction me_MBD2 nome 

##    me_MBD2      27   11 

##    nome          8   25 

##                                            

##                Accuracy : 0.7324           

##                  95% CI : (0.6141, 0.8306) 

##     No Information Rate : 0.507            

##     P-Value [Acc > NIR] : 9.002e-05        

##                                            

##                   Kappa : 0.4653           

##                                            

##  Mcnemar's Test P-Value : 0.6464           

##                                            

##             Sensitivity : 0.6944           

##             Specificity : 0.7714           

##          Pos Pred Value : 0.7576           
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##          Neg Pred Value : 0.7105           

##              Prevalence : 0.5070           

##          Detection Rate : 0.3521           

##    Detection Prevalence : 0.4648           

##       Balanced Accuracy : 0.7329           

##                                            

##        'Positive' Class : nome             

########################### Model Evaluation ######################## 

model_list <- list(RF=model_rf, LG=model_logreg_df, LDA = model_lda_df, 

                  KNN = model_knn 

resamples <- resamples(model_list) 

bwplot(resamples, metric = "ROC", main = "Evaluating performance of different algorithms") 
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